In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m3 along with the design of a 4 m3 continuous process for enzymatic biodiesel production catalysed by NS-40116 (a liquid formulation of a modified *Thermomyces lanuginosus* lipase). Based on the analysis of actual pilot plant data for the transesterification of used cooking oil and brown grease, we propose a method applying first order integral analysis to fed-batch data based on either the bound glycerol or free fatty acid content in the oil. This method greatly simplifies the modelling process and gives an indication of the effect of mixing at the various scales (80L to 40m3) along with the prediction of the residence time needed to reach a desired conversion in a CSTR.

Suitable process metrics reflecting commercial performance such as the reaction time, enzyme efficiency and reactor productivity were evaluated for both the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling price of 0.6 USD/kg and a one-time use of the enzyme (0.1% \(\text{w/w}_\text{oil}\) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. This article is protected by copyright. All rights reserved.

General information

State: Published
Organisations: CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Viesel Fuel, Novozymes AS
Pages: 1719–1728
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Biotechnology and Bioengineering
Volume: 113
Issue number: 8
ISSN (Print): 0006-3592
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.07 SJR 1.372 SNIP 1.186
Web of Science (2017): Impact factor 3.952
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.14 SJR 1.447 SNIP 1.178
Web of Science (2016): Impact factor 4.481
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.44 SJR 1.632 SNIP 1.355
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.16 SJR 1.612 SNIP 1.395
Web of Science (2014): Impact factor 4.126
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.44 SJR 1.637 SNIP 1.427
Web of Science (2013): Impact factor 4.164
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.04 SJR 1.62 SNIP 1.364