Scales of renewability exemplified by a case study of three Danish pig production systems - DTU Orbit (16/12/2018)

Scales of renewability exemplified by a case study of three Danish pig production systems

Environmental indicators are increasingly defined and applied to estimate the human impact on nature and to evaluate human resource use. When considering the environmental impact of food production systems, there is a need to include the impact on different spatial scales. At present, emergy assessments do not, in general, consider global versus local origin of purchased goods. To provide a more detailed picture of how production systems perform with respect to different spatial scales, we expand the renewability concept with a set of indicators that categorise purchased goods according to their geographical origin being within system boundaries (on-site), from local sources, or from non-local sources. An emergy assessment of the resource use for production of pigs (measured as live weight of pigs sold) from three Danish pig production systems (organic small (OS), organic large (OL) and conventional (C)) exemplifies the use of this set of indicators. The results show that at the on-site scale the pig production systems had about the same fraction of renewable inputs of less than 0.5%. However, when the renewability fraction of inputs was accounted for at the global scale, the two organic systems were more renewable (about 20%) compared to the conventional system (13%). Further, local input represented the largest part of the input to OS (66%), while OL had the largest non-local input (74%). This demonstrates that the set of indicators is able to evaluate different strategies for purchasing goods and thus emphasises the importance of accounting for inputs from society differently depending on spatial scale.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering
Contributors: Wright, C., Østergård, H.
Pages: 28-36
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Ecological Modelling
Volume: 315
ISSN (Print): 0304-3800
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.69 SJR 1.084 SNIP 1.088
Web of Science (2017): Impact factor 2.507
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.43 SJR 0.967 SNIP 1.09
Web of Science (2016): Impact factor 2.363
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.43 SJR 1.082 SNIP 1.097
Web of Science (2015): Impact factor 2.275
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.7 SJR 1.132 SNIP 1.341
Web of Science (2014): Impact factor 2.321
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.53 SJR 1.148 SNIP 1.318
Web of Science (2013): Impact factor 2.326
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.28 SJR 1.045 SNIP 1.249
Web of Science (2012): Impact factor 2.069
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.34 SJR 1.186 SNIP 1.128
Web of Science (2011): Impact factor 2.326
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.085 SNIP 1.125
Web of Science (2010): Impact factor 1.769
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.31 SNIP 1.249
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.355 SNIP 1.292
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.353 SNIP 1.37
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.229 SNIP 1.551
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.451 SNIP 1.311
Scopus rating (2004): SJR 1.055 SNIP 1.092
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.174 SNIP 1.247
Scopus rating (2002): SJR 0.906 SNIP 1.097
Scopus rating (2001): SJR 0.967 SNIP 0.994
Scopus rating (2000): SJR 0.968 SNIP 0.921
Scopus rating (1999): SJR 0.896 SNIP 0.85
Original language: English
Keywords: Emergy assessment, Renewable inputs, Renewability fraction, Local resource use, Livestock systems, Pig production
DOIs:
10.1016/j.ecolmodel.2015.04.018
Source: FindIt
Source-ID: 2265591415
Research output: Research - peer-review ; Journal article – Annual report year: 2015