Robust design principles for reducing variation in functional performance

This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors' experience. The paper presents 15 principles and describes their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method application, towards forming product variation management strategies.

General information
State: Published
Organisations: Department of Mechanical Engineering, Engineering Design and Product Development
Contributors: Christensen, M. E., Howard, T. J.
Pages: 75-92
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Engineering Design
Volume: 27
Issue number: 1-3
ISSN (Print): 0954-4828
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.39 SJR 0.727 SNIP 1.379
Web of Science (2017): Impact factor 1.906
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.19 SJR 0.792 SNIP 1.72
Web of Science (2016): Impact factor 1.459
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.12 SJR 0.917 SNIP 1.65
Web of Science (2015): Impact factor 1.946
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.74 SJR 1.181 SNIP 1.201
Web of Science (2014): Impact factor 1.036
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.06 SJR 1.011 SNIP 1.667
Web of Science (2013): Impact factor 1.381
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.54 SJR 1.024 SNIP 1.955
Web of Science (2012): Impact factor 1.066
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.14 SJR 0.502 SNIP 1.271
Web of Science (2011): Impact factor 0.928
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.53 SNIP 1.032
Web of Science (2010): Impact factor 0.815
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.591 SNIP 1.188
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.378 SNIP 0.859
Scopus rating (2007): SJR 0.577 SNIP 1.387
Scopus rating (2006): SJR 0.474 SNIP 1.387
Scopus rating (2005): SJR 0.246 SNIP 0.599
Scopus rating (2004): SJR 0.346 SNIP 0.803
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.435 SNIP 0.669
Scopus rating (2002): SJR 0.719 SNIP 0.954
Scopus rating (2001): SJR 0.277 SNIP 0.663
Scopus rating (2000): SJR 0.409 SNIP 0.742
Scopus rating (1999): SJR 0.4 SNIP 1.22
Original language: English
Keywords: Robust design, Design strategies, Quality management
Electronic versions:
Robust_Design_Principles_for_Reducing_Variation_in_Functional_Performance_FINAL_v2.docx. Embargo ended: 07/01/2017
DOIs:
10.1080/09544828.2015.1103844
Source: Findit
Source-ID: 2290155786
Research output: Research - peer-review > Journal article – Annual report year: 2016