Road pricing with complications

The rationale for congestion charges is that by internalising the marginal external congestion cost, they restore efficiency in the transport market. In the canonical model underlying this view, congestion is a static phenomenon, users are taken to be homogenous, there is no travel time risk, and a highly stylised model of congestion is used. The simple analysis also ignores that real pricing schemes are only rough approximations to ideal systems and that inefficiencies in related markets potentially affect the case for congestion charges. The canonical model tends to understate the marginal external congestion cost because it ignores user heterogeneity and trip timing inefficiencies. With respect to the relevance of interactions between congestion and congestion charges and tax distortions and distributional concerns, recent insights point out that there is no general case for modifying charges for such interactions. Therefore the simple Pigouvian rule remains a good first approximation for the design of road charging systems.

General information
State: Published
Organisations: Department of Transport, Transport policy and behaviour, Joint Transport Research Centre of the International Transport Forum and the OECD
Contributors: Fosgerau, M., Van Dender, K.
Pages: 479-503
Publication date: May 2013
Peer-reviewed: Yes

Publication information
Journal: Transportation
Volume: 40
Issue number: 3
ISSN (Print): 0049-4488
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.85 SJR 1.911 SNIP 1.614
Web of Science (2017): Impact factor 3.151
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.37 SJR 1.671 SNIP 1.746
Web of Science (2016): Impact factor 2.633
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.1 SJR 1.388 SNIP 1.38
Web of Science (2015): Impact factor 1.545
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.49 SJR 1.795 SNIP 2.009
Web of Science (2014): Impact factor 2.358
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.03 SJR 1.609 SNIP 1.755
Web of Science (2013): Impact factor 1.617
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.61 SJR 1.327 SNIP 1.642
Web of Science (2012): Impact factor 1.657
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.63 SJR 1.331 SNIP 1.509
Web of Science (2011): Impact factor 1.023
ISI indexed (2011): ISI indexed yes