Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective” - DTU Orbit (19/01/2019)

Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”

The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with revisions by Kustas and Norman (1999) over a semiarid tussock grassland site in southeastern Spain. The TSM - in its current incarnation, the two-source energy balance model (TSEB) - was applied to this landscape using ground-based infrared radiometer sensors to estimate both the composite surface radiometric temperature and component soil and canopy temperatures. Morillas et al. (2013) found the TSEB model substantially underestimated the sensible H (and overestimated the latent heat LE) fluxes. Using the same data set from Morillas et al. (2013), we were able to confirm their results. We also found energy transport and exchange behavior derived from primarily the observations themselves to differ significantly from a number of prior studies using land surface temperature for estimating heat fluxes with one-source modeling approaches in semi-arid landscapes. However, revisions to key vegetation inputs to TSEB and the soil resistance formulation resulted in a significant reduction in the bias and root mean square error (RMSE) between model output of H and LE and the measurements compared to the prior results from Morillas et al. (2013). These included more representative ground-based vegetation greenness and local leaf area index values as well as modifications to the coefficients of the soil resistance formulation to account for the very rough (rocky) soil surface conditions with a clumped canopy. This indicates that both limitations in remote estimates of biophysical indicators of the canopy at the site and the lack of adjustment in soil resistance formulation to account for site specific characteristics, contributed to the earlier findings of Morillas et al. (2013). This suggests further studies need to be conducted to reduce the uncertainties in the vegetation and land surface temperature input data in order to more accurately assess the effects of the transport exchange processes of this Mediterranean landscape on TSEB formulations.

General information

State: Published

Organisations: Department of Environmental Engineering, Water Resources Engineering, U.S. Arid Land Agricultural Research Center, Spanish Research Council Institute for Sustainable Agriculture, University of British Columbia, Utah State University, Pablo de Olavide University, Consejo Superior de Investigaciones Científicas

Number of pages: 9

Pages: 645-653

Publication date: 2016

Peer-reviewed: Yes

Publication information

Journal: Remote Sensing of Environment

Volume: 184

ISSN (Print): 0034-4257

Ratings:

BFI (2019): BFI-level 2

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 2

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 2

Scopus rating (2017): CiteScore 7.16 SJR 3.121 SNIP 2.5

Web of Science (2017): Impact factor 6.457

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 2

Scopus rating (2016): CiteScore 6.92 SJR 3.035 SNIP 2.956

Web of Science (2016): Impact factor 6.265

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 2

Scopus rating (2015): CiteScore 7.27 SJR 3.697 SNIP 3.044

Web of Science (2015): Impact factor 5.881

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 2

Scopus rating (2014): CiteScore 7.21 SJR 3.881 SNIP 3.477
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.6 SJR 3.148 SNIP 2.982
Web of Science (2013): Impact factor 4.769
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.99 SJR 3.449 SNIP 3.663
Web of Science (2012): Impact factor 5.103
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.72 SJR 3.438 SNIP 3.088
Web of Science (2011): Impact factor 4.574
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.786 SNIP 2.789
Web of Science (2010): Impact factor 3.954
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.443 SNIP 2.486
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.29 SNIP 3.093
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.911 SNIP 2.986
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.322 SNIP 2.766
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.616 SNIP 3.257
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 3.295 SNIP 3.16
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.7 SNIP 2.892
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.171 SNIP 2.727
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.651 SNIP 2.092
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.046 SNIP 1.959
Scopus rating (1999): SJR 1.105 SNIP 1.494
Original language: English
DOI's: 10.1016/j.rse.2016.07.024
Source: FindIt
Source-ID: 2306948509
Research output: Research - peer-review : Journal article – Annual report year: 2016