Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy

A new versatile method to measure rates and determine activation energies for the Brønsted acid catalysed hydrolysis of cellulose and cellobiose (and other polymeric carbohydrates) in ionic liquids is demonstrated by following the C–O stretching band of the glycoside bond with in situ ATR-FTIR. An activation energy in excellent agreement with the literature was determined for cellulose hydrolysis, whereas a distinctly lower activation energy was determined for cellobiose hydrolysis. The methodology also allowed to independently determine activation energies for the formation of 5-hydroxymethylfurfural in the systems.

General information

State: Published
Organisations: Centre for Catalysis and Sustainable Chemistry, Department of Chemistry
Contributors: Kunov-Kruse, A. J., Riisager, A., Shunmugavel, S., Berg, R. W., Kristensen, S. B., Fehrmann, R.
Pages: 2843-2848
Publication date: 2013
Peer-reviewed: Yes

Publication Information

Journal: Green Chemistry
Volume: 15
Issue number: 10
ISSN (Print): 1463-9262
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 8.99 SJR 2.496 SNIP 1.847
- Web of Science (2017): Impact factor 8.586
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 8.86 SJR 2.598 SNIP 2.021
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 8.21 SJR 2.452 SNIP 1.884
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 8.05 SJR 2.386 SNIP 1.989
- Web of Science (2014): Impact factor 8.02
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 7.44 SJR 2.28 SNIP 1.804
- Web of Science (2013): Impact factor 6.852
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 6.64 SJR 2.444 SNIP 1.701
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
- Scopus rating (2011): CiteScore 6.46 SJR 2.32 SNIP 1.641
Web of Science (2011): Impact factor 6.32
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.142 SNIP 1.625
Web of Science (2010): Impact factor 5.472
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.088 SNIP 1.729
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.004 SNIP 1.544
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.131 SNIP 1.521
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.554 SNIP 1.414
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.407 SNIP 1.317
Scopus rating (2004): SJR 1.375 SNIP 1.404
Scopus rating (2003): SJR 0.903 SNIP 1.081
Scopus rating (2002): SJR 1.962 SNIP 1.274
Scopus rating (2001): SJR 1.035 SNIP 1.346
Scopus rating (2000): SJR 0.775 SNIP 1.193
Original language: English
Keywords: Spectral curve deconvolution, Functional theory dft, Crystalline polysaccharides, Infrared spectra, Stretching vibrations, Native celluloses, Dehydration, Conversion, Fructose, Glucose
Electronic versions:
c3gc41174e.pdf
DOIs:
10.1039/c3gc41174e
Source: dtu
Source-ID: u::8448
Research output: Research - peer-review : Journal article – Annual report year: 2013