Revisiting liquid lubrication methods by means of a fully coupled approach combining plastic deformation and liquid lubrication - DTU Orbit (13/12/2018)

This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and the plastic deformation of the metallic material in metal forming are solved simultaneously. The proposed method is an alternative to conventional modelling techniques which allow studying the effect of a broad range of parameters directly on the friction conditions. The approach is applied to strip reduction of a sheet with mesoscopic surface pockets in order to investigate the escape of lubricant from the pocket by means of Micro Plasto Hydrodynamic Lubrication and Micro Plasto Hydrostatic Lubrication. For the investigation on Micro Plasto Hydrostatic Lubrication, the friction along the tool–workpiece contact interface and the back tension are taken as parameters, and the backward escape Micro Plasto Hydrodynamic Lubrication is investigated by variations in lubricant viscosity by means of a combined numerical and analytical model, and by variations in drawing speed. Good agreement is found with the experimental observations.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, University of Lisbon
Contributors: Üstünyagiz, E., Christiansen, P., Nielsen, C. V., Bay, N. O., Martins, P. A.
Pages: 1425-1433
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 231
Issue number: 11
ISSN (Print): 1350-6501
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.41 SJR 0.725 SNIP 1.076
Web of Science (2017): Impact factor 1.318
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.18 SJR 0.691 SNIP 0.89
Web of Science (2016): Impact factor 1.32
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.98 SJR 0.611 SNIP 0.939
Web of Science (2015): Impact factor 0.907
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.89 SJR 0.598 SNIP 1.05
Web of Science (2014): Impact factor 0.916
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.83 SJR 0.685 SNIP 1.051
Web of Science (2013): Impact factor 0.66
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.72 SJR 0.666 SNIP 0.951
Web of Science (2012): Impact factor 0.631
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.8 SJR 0.696 SNIP 1.194
Web of Science (2011): Impact factor 0.733
ISI indexed (2011): ISI indexed yes
Keywords: Plastic deformation, Viscous flow, Finite element method, Liquid lubrication mechanisms, Lubricant pockets

Electronic versions:
Authors_final_manuscript.pdf. Embargo ended: 02/11/2018

DOIs:
10.1177/1350650117697825

Research output: Research - peer-review » Journal article – Annual report year: 2017