Revealing the compact structure of lactic acid bacterial hetero-exopolysaccharides by SAXS and DLS

Molecular structures of exopolysaccharides are required to understand their functions and the relationships between the structure and physical and rheological properties. Small-angle X-ray scattering and dynamic light scattering were used in conjunction with molecular modeling to characterize solution structures of three lactic acid bacterial hetero-exopolysaccharides (HePS-1, HePS-2 and HePS-3). Values of radius of gyration R_G, cross-sectional radius of gyration R_X, approximate length L and hydrodynamic diameter were not directly proportional to the molar mass and indicated the HePSs adopted a compact coil-like rather than an extended conformation. Constrained molecular modeling of 15,000 randomised HePS-1 conformers resulted in five best-fit structures with R factor of 3.94.6% revealing random coil-like structure. ϕ and ψ angle analysis of glycosidic linkages in HePS-1 structures suggests Galf residues significantly influence the conformation. Ab initio scattering modeling of HePS-2 and HePS-3 gave excellent curve fittings with χ^2 of 0.43 and 0.34 for best-fit models, respectively, compatible with coil-like conformation. The findings disclose solution behaviour of HePS relevant for their interactions with biomacromolecules e.g. milk proteins.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Amphiphilic Polymers in Biological Sensing, Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Department of Chemistry, X-ray Crystallography, Agriculture and Agri-Food Canada, University of Copenhagen
Contributors: Khan, S., Birch, J., Harris, P., Van Calsteren, M., Ipsen, R., Peters, G. H., Svensson, B., Almdal, K.
Pages: 747-757
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Biomacromolecules
Volume: 18
Issue number: 3
ISSN (Print): 1525-7797
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.89 SJR 1.95 SNIP 1.339
Web of Science (2017): Impact factor 5.738
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.74 SJR 1.98 SNIP 1.323
Web of Science (2016): Impact factor 5.246
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.05 SJR 2.105 SNIP 1.434
Web of Science (2015): Impact factor 5.583
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.38 SJR 2.207 SNIP 1.642
Web of Science (2014): Impact factor 5.75
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.07 SJR 2.09 SNIP 1.593
Web of Science (2013): Impact factor 5.788
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.72 SJR 2.316 SNIP 1.661
Web of Science (2012): Impact factor 5.371
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.74 SJR 2.222 SNIP 1.759
Web of Science (2011): Impact factor 5.479
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.347 SNIP 1.652
Web of Science (2010): Impact factor 5.327
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.29 SNIP 1.582
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.238 SNIP 1.48
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.178 SNIP 1.528
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.868 SNIP 1.5
Scopus rating (2005): SJR 1.665 SNIP 1.463
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.464 SNIP 1.34
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.191 SNIP 1.188
Scopus rating (2002): SJR 2.372 SNIP 1.166
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.794 SNIP 0.887
Web of Science (2000): Indexed yes
Original language: English
Electronic versions:
l236_postprint_VersionSubmitted20161225.pdf. Embargo ended: 02/01/2018
DOIs:
10.1021/acs.biomac.6b01597
Source: FindIt
Source-ID: 2350446034
Research output: Research - peer-review › Journal article – Annual report year: 2017