Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis - DTU Orbit (30/03/2019)

Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the absence of RA signaling in TEC, cortical TEC (cTEC) and CD80^loMHC class II^lo medullary TEC displayed subset-specific alterations in gene expression, which in cTEC included genes involved in epithelial proliferation, development, and differentiation. Mice whose TEC were unable to respond to RA showed increased cTEC proliferation, an accumulation of stem cell Ag-1^hi cTEC, and, in early life, a decrease in medullary TEC numbers. These alterations resulted in reduced thymic cellularity in early life, a reduction in CD4 single-positive and CD8 single-positive numbers in both young and adult mice, and enhanced peripheral CD8\(^{+}\) T cell survival upon TCR stimulation. Collectively, our results identify RA as a regulator of TEC homeostasis that is essential for TEC function and normal thymopoiesis.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Department of Bio and Health Informatics, Integrative Systems Biology, Lund University, University of Copenhagen, University of Birmingham, University of Basel
Number of pages: 13
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Journal of Immunology
Volume: 200
Issue number: 11
Article number: ji1800418
ISSN (Print): 0022-1767
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.55 SJR 2.837 SNIP 1.112
Web of Science (2017): Impact factor 4.539
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.79 SJR 3.474 SNIP 1.176
Web of Science (2016): Impact factor 4.856
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.05 SJR 3.571 SNIP 1.26
Web of Science (2015): Impact factor 4.985
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.03 SJR 3.744 SNIP 1.271
Web of Science (2014): Impact factor 4.922
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.61 SJR 3.909 SNIP 1.35
Web of Science (2013): Impact factor 5.362
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.82 SJR 4.011 SNIP 1.362