Resolving Ultrasound Contrast Microbubbles using Minimum Variance Beamforming - DTU Orbit (05/11/2018)

Resolving Ultrasound Contrast Microbubbles using Minimum Variance Beamforming

Minimum Variance (MV) beamforming is known to improve the lateral resolution of ultrasound images and enhance the separation of isolated point scatterers. This paper aims to evaluate the adaptive beamformer's performance with flowing microbubbles (MBs), which are relevant to super-resolution ultrasound imaging. Simulations using point scatterer data from single emissions were complemented by an experimental investigation performed using a capillary tube phantom and the Synthetic Aperture Real-time Ultrasound System (SARUS). The MV performance was assessed by the minimum distance that allows the display of two scatterers positioned side-by-side, the lateral Full-Width-Half-Maximum (FWHM), and the Peak-Side-lobe-Level (PSL). In the tube, scatterer responses separated by down to 196 μm (or 1.05λ) were distinguished by the MV method, while the standard Delay-and-Sum (DAS) beamformers were unable to achieve such separation. Up to 9-fold FWHM decrease was also measured in favour of the MV beamformer, for individual echoes from MBs. The lateral distance between two scatterers impacted on their FWHM value, and additional differences in the scatterers’ axial or out-of-plane position also impacted on their size and appearance. The simulation and experimental results were in agreement in terms of lateral resolution. The point scatterer study showed that the proposed MV imaging scheme provided clear resolution benefits compared to DAS. Current super-resolution methods mainly depend on DAS beamformers. Instead, the use of the MV method may provide a larger number of detected, and potentially better localized, MB scatterers.

General information
State: Accepted/In press
Organisations: Department of Electrical Engineering, Biomedical Engineering, Center for Fast Ultrasound Imaging, Heriot-Watt University, University of Edinburgh
Number of pages: 11
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Medical Imaging
ISSN (Print): 0278-0062
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.6 SJR 1.895 SNIP 2.874
Web of Science (2017): Impact factor 6.131
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.83 SJR 1.596 SNIP 2.388
Web of Science (2016): Impact factor 3.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.9 SJR 1.9 SNIP 2.642
Web of Science (2015): Impact factor 3.756
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.66 SJR 1.604 SNIP 2.675
Web of Science (2014): Impact factor 3.39
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.55 SJR 2.089 SNIP 3.215
Web of Science (2013): Impact factor 3.799
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.94 SJR 1.703 SNIP 3.244
Web of Science (2012): Impact factor 4.027
ISI indexed (2012): ISI indexed yes