Reply to: “A response to some unwarranted criticisms of single-grain dating” by J.K. Feathers - DTU Orbit (16/12/2018)

Reply to: “A response to some unwarranted criticisms of single-grain dating” by J.K. Feathers

In the note “A response to some unwarranted criticisms of single-grain dating” Feathers raises many issues with both the approach and the conclusions of Thomsen et al. (2016). After careful consideration, we find we disagree with Feather’s analysis and conclusions, and stand by the original conclusions of Thomsen et al. (2016). We reiterate that, for these samples, the multi-grain measurements are demonstrably in better agreement with the independent age control than are the standard single-grain measurements.

In our view, Feathers’ most important criticisms are that the 14C age control is reported incorrectly and that Thomsen et al. (2016) cannot conclude that standard single-grain methods are in poorer agreement with the independent age control than the multi-grain methods. We acknowledge the presence of a minor presentation error in Figure 3 of Thomsen et al. (2016), but we demonstrate that this detail has no bearing on the conclusions of Thomsen et al. (2016).

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, Aarhus University, Fundação Côa Parque, Université Bordeaux Montaigu
Contributors: Thomsen, K. J., Murray, A. S., Buylaert, J., Jain, M., Helt-Hansen, J., Aubry, T., Guerin, G.
Number of pages: 7
Pages: 8-14
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Quaternary Geochronology
Volume: 37
ISSN (Print): 1871-1014
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.17 SJR 1.972 SNIP 1.287
Web of Science (2017): Impact factor 3.44
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.3 SJR 1.738 SNIP 0.984
Web of Science (2016): Impact factor 2.46
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.22 SJR 2.158 SNIP 1.367
Web of Science (2015): Impact factor 3.142
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.86 SJR 1.953 SNIP 1.218
Web of Science (2014): Impact factor 2.687
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.89 SJR 2.512 SNIP 1.344
Web of Science (2013): Impact factor 2.476
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.77 SJR 2.783 SNIP 1.856
Web of Science (2012): Impact factor 4.015
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.29 SJR 2.559 SNIP 1.552