Renewable energy policies in Europe: Converging or diverging?

Nations today are urgently challenged with achieving a significant increase in the deployment of renewable energies. In Europe that need has given rise to a debate about the most effective and efficient support strategy. Whilst the different interests debate whether full European harmonisation or strengthening of national support policies for electricity from renewable energy sources (RES-E) is the best way forward, individual national support schemes are rapidly evolving. This study investigates how the EU member states have applied support policy types over the last decade. By identifying predominant developments in the application of feed-in tariffs, premiums, tradeable green certificates, tax incentives, investment grants, and financing support for specific technologies (wind, biomass, PV), this study shows that Europe is currently experiencing certain tendencies towards a ‘bottom-up’ convergence of how national policy-makers design RES-E policy supports. While some outliers remain, the policy supports of most countries become more similar in the policy types applied (dominance of feed-in tariffs) and in their scope of implementation (differentiation for installation sizes and ‘stacking’ of multiple instruments). These trends in national decision-making, which show tendencies of convergence, could make an EU-driven ‘top-down’ harmonisation of support either dispensable or at least (depending on the agreement) less controversial.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis, University of Exeter
Contributors: Kitzing, L., Mitchell, C., Morthorst, P. E.
Pages: 192-201
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Energy Policy
Volume: 51
ISSN (Print): 0301-4215
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.97 SJR 1.994 SNIP 2.094
Web of Science (2017): Impact factor 4.039
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.49 SJR 2.197 SNIP 1.985
Web of Science (2016): Impact factor 4.14
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.98 SJR 2.287 SNIP 1.762
Web of Science (2015): Impact factor 3.045
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.62 SJR 2.143 SNIP 1.892
Web of Science (2014): Impact factor 2.575
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.74 SJR 1.891 SNIP 2.168
Web of Science (2013): Impact factor 2.696
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.52 SJR 1.75 SNIP 2.042
Web of Science (2012): Impact factor 2.743
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.35 SJR 1.578 SNIP 1.934
Web of Science (2011): Impact factor 2.723
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.478 SNIP 1.845
Web of Science (2010): Impact factor 2.629
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.379 SNIP 1.919
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.207 SNIP 1.614
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.29 SNIP 2.136
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.822 SNIP 2.138
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.637 SNIP 1.635
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.909 SNIP 1.747
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.739 SNIP 1.674
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.607 SNIP 1.568
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.525 SNIP 1.623
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.571 SNIP 1.124
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.515 SNIP 0.873
Original language: English
Keywords: Renewable energy policy, Harmonisation, Europe
Electronic versions:
Postprint
DOIs:
10.1016/j.enpol.2012.08.064
Source: dtu
Source-ID: n::oai:DTIC-ART:elsevier/373181892::20715
Research output: Research - peer-review › Journal article – Annual report year: 2012