Renewable energy and low carbon economy transition in India - DTU Orbit (10/12/2018)

Renewable energy and low carbon economy transition in India

Cooperation of large developing countries such as India would be important in achieving a low carbon future, which can help in restricting the global temperature rise to 2°C. Global modeling studies of such low carbon scenarios point to a prominent role for renewable energy. This paper reports scenarios for a low carbon future in India. An integrated modeling framework is used for assessing the alternate development pathways having equal cumulative CO2 emissions. The modeling period ranges from 2005 to 2050. The first pathway assumes a conventional development pattern together with a carbon price that aligns India’s emissions to an optimal 450 ppmv CO2-eq. stabilization global response. The second emissions pathway assumes an underlying sustainable development pattern. A low carbon future will be good for renewable energy under both the development pathways, though the share of renewable energy will be higher under a sustainable pathway. Renewable energy faces competition from low carbon technologies like nuclear and carbon capture and storage in the electricity sector. Solar, wind, biomass, and biofuels emerge as the four competitive renewable energy choices for India. Renewable development however depends critically on the reduction in the costs and in the ability to integrate the intermittent renewables within the existing systems for which technology transfer and capacity building hold the key.

General information

State: Published
Organisations: UNEP Risoe Centre on Energy, Climate and Sustainable Development (URC), Systems Analysis Division, Risø National Laboratory for Sustainable Energy, Indian Institute of Management Ahmedabad, National Institute for Environmental Studies
Contributors: Shukla, P., Dhar, S., Fujino, J.
Pages: 031005
Publication date: 2010
Peer-reviewed: Yes

Publication information

Journal: Journal of Renewable and Sustainable Energy
Volume: 2
Issue number: 3
ISSN (Print): 1941-7012
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.41 SJR 0.44 SNIP 0.588
Web of Science (2017): Impact factor 1.337
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.2 SJR 0.416 SNIP 0.55
Web of Science (2016): Impact factor 1.135
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.02 SJR 0.369 SNIP 0.534
Web of Science (2015): Impact factor 0.961
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.05 SJR 0.407 SNIP 0.712
Web of Science (2014): Impact factor 0.904
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.26 SJR 0.451 SNIP 0.886
Web of Science (2013): Impact factor 0.925
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 1.77 SJR 0.578 SNIP 1.285
Web of Science (2012): Impact factor 1.514
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 1.3 SJR 0.344 SNIP 1.036
Web of Science (2011): Impact factor 1.214
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
Web of Science (2010): Impact factor 0.873
Web of Science (2010): Indexed yes
Original language: English
Keywords: Energy and Carbon Finance, Systems analysis
DOIs: 10.1063/1.3411001
Source: orbit
Source-ID: 265078
Research output: Research - peer-review : Journal article – Annual report year: 2010