Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques
- DTU Orbit (10/12/2018)

Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different derivatization agents as the scavengers. Discovery chemistry is performed in the beginning as a screening procedure, followed by the process design of a small-scale continuous process for benzaldehyde removal with in-line real-time monitoring. Applications of tris(hydroxymethyl) aminomethane (TRIS) are found to provide above average removal of benzaldehyde.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, University of Copenhagen
Contributors: Mitic, A., Skov, T., Gernaey, K. V.
Number of pages: 9
Pages: 353-361
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Green Processing and Synthesis
Volume: 6
Issue number: 3
ISSN (Print): 2191-9542
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 0.64 SJR 0.247 SNIP 0.348
Web of Science (2017): Impact factor 0.736
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 0.9 SJR 0.284 SNIP 0.342
Web of Science (2016): Impact factor 0.782
Scopus rating (2015): CiteScore 1.03 SJR 0.27 SNIP 0.448
Scopus rating (2014): SJR 0.271 SNIP 0.609
Web of Science (2014): Impact factor 1.125
Web of Science (2014): Indexed yes
Scopus rating (2013): SJR 0.391 SNIP 0.633
ISI indexed (2013): ISI indexed no
ISI indexed (2012): ISI indexed no
Original language: English
Keywords: Carbonyl compounds, Process analytical technology (PAT), Process intensification, Scavenger
DOIs:
10.1515/gps-2016-0085
Source: FindIt
Source-ID: 2371973914
Research output: Research - peer-review : Journal article – Annual report year: 2017