Relationship between voice coil fill factor and loudspeaker efficiency

In modern audio systems, utilizing switch-mode amplifiers, the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 3 to 8 Ω are obtained, despite modern audio amplifiers, using switch-mode technology, can be designed to much lower loads. A thorough analysis of the loudspeaker efficiency is presented and its relation to the voice coil fill factor is described. In addition to this the influence of the driver’s mass ratio is investigated and it is found that high mass ratios is beneficial for the efficiency of drivers using high fill factor voice coils. Different voice coil winding strategies are described and their fill factors analysed. It is found that by lowering the nominal resistance of a voice coil, using rectangular wire, one can increase the fill factor. However a practical realization of four voice coil designs could not proof this due to wire insulations issues. Despite that a good correlation between theory and experimental results is found and it is shown that the efficiency is dependent on the fill factor as predicted. Moreover the fill factor of a conventional 4 Ω voice coil was measured to be 53 % which leaves plenty of room for future fill factor optimization.

General information
State: Published
Organisations: Department of Electrical Engineering, Electronics
Contributors: Iversen, N. E., Knott, A., Andersen, M. A. E.
Pages: 241-252
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Audio Engineering Society
Volume: 64
Issue number: 4
ISSN (Print): 1549-4950
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SJR 0.265 SNIP 0.853
Web of Science (2017): Impact factor 0.774
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.95 SJR 0.306 SNIP 0.934
Web of Science (2016): Impact factor 0.707
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.11 SJR 0.408 SNIP 1.457
Web of Science (2015): Impact factor 0.856
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.05 SJR 0.592 SNIP 1.399
Web of Science (2014): Impact factor 1.123
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.35 SJR 0.441 SNIP 1.973
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.68 SJR 0.411 SNIP 1.15
Web of Science (2012): Impact factor 0.831
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.58 SJR 0.409 SNIP 1.039
Web of Science (2011): Impact factor 0.432
ISI indexed (2011): ISI indexed yes