Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of 1,1-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Center for Energy Resources Engineering, University of Pisa
Contributors: Goswami, K., Galantini, F., Mazurek, P. S., Daugaard, A. E., Gallone, G., Skov, A. L.
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Smart Materials and Structures
Volume: 22
ISSN (Print): 0964-1726
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.38 SJR 1.152 SNIP 1.474
Web of Science (2017): Impact factor 2.963
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.1 SJR 1.038 SNIP 1.599
Web of Science (2016): Impact factor 2.909
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.03 SJR 1.177 SNIP 1.737
Web of Science (2015): Impact factor 2.769
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.9 SJR 1.232 SNIP 1.836
Web of Science (2014): Impact factor 2.502
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.61 SJR 1.006 SNIP 1.92
Web of Science (2013): Impact factor 2.449
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.19 SJR 0.991 SNIP 1.723
Web of Science (2012): Impact factor 2.024
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.53 SJR 1.149 SNIP 1.941
Web of Science (2011): Impact factor 2.089