Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling - DTU Orbit (17/12/2018)

Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling

A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na₂CO₃ and Na₃PO₄ as precipitants, lithium is recovered as raw Li₂CO₃ and pure Li₃PO₄, respectively. Under the best reaction condition (both the amounts of Na₂CO₃ and Li₃PO₄ vs. the theoretical ones are about 1.1), the corresponding recovery rates of lithium (calculated based on the concentration of the previous stage) are 74.72% and 92.21%, respectively. The raw Li₂CO₃ containing the impurity of Na₂CO₃ is used to prepare LiMn₂O₄ as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na₂CO₃ in raw Li₂CO₃ is controlled less than 10%, the Mn corrosion percentage of LiMn₂O₄ decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g⁻¹. The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li₂CO₃ in the field of lithium ion sieve.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Molecular Windows, Central South University
Contributors: Guo, X., Cao, X., Huang, G., Tian, Q., Sun, H.
Number of pages: 6
Pages: 84-89
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Environmental Management
Volume: 198
ISSN (Print): 0301-4797
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.54 SJR 1.161 SNIP 1.705
Web of Science (2017): Impact factor 4.005
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.28 SJR 1.161 SNIP 1.809
Web of Science (2016): Impact factor 4.01
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.86 SJR 1.189 SNIP 1.712
Web of Science (2015): Impact factor 3.131
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.62 SJR 1.228 SNIP 1.913
Web of Science (2014): Impact factor 2.723
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.84 SJR 1.203 SNIP 1.988
Web of Science (2013): Impact factor 3.188
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.01 SJR 1.354 SNIP 2.51
Web of Science (2012): Impact factor 3.057
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.66 SJR 1.212 SNIP 2.182