Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials

Publication: Research - peer-reviewJournal article – Annual report year: 2009

NullPointerException

View graph of relations

A fundamental imaging problem in microstructural analysis of metals is the reconstruction of local crystallographic orientations from X-ray diffraction measurements. This work develops a fast, accurate, and robust method for the computation of the three-dimensional orientation distribution function for individual grains of the material in consideration. We study two iterative large-scale reconstruction algorithms, the algebraic reconstruction technique (ART) and conjugate gradients for least squares (CGLS), and demonstrate that right preconditioning is necessary in both algorithms to provide satisfactory reconstructions. Our right preconditioner is not a traditional one that accelerates convergence; its purpose is to modify the smoothness properties of the reconstruction. We also show that a new stopping criterion, based on the information available in the residual vector, provides a robust choice of the number of iterations for these preconditioned methods.
Original languageEnglish
JournalSIAM Journal of Imaging Sciences
Publication date2009
Volume2
Journal number2
Pages593-613
ISSN1936-4954
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 8

Keywords

  • materials science, Materials characterization and modelling, stopping criterion, preconditioning, regularizing iterations, orientation distribution function, polycrystals
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6406329