Recognition of microbial viability via TLR8 drives T_{FH} cell differentiation and vaccine responses

Recognition of microbial viability via TLR8 drives T_{FH} cell differentiation and vaccine responses

Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (T_{FH}) cell differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting T_{FH} cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust T_{FH} cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of T_{FH} cell differentiation and a promising target for T_{FH} cell-skewing vaccine adjuvants.

General information

State: Published
Organisations: Department of Biotechnology and Biomedicine, National Veterinary Institute, Adaptive Immunology, Charité-Universitätsmedizin Berlin, Free University of Berlin, Leibniz Institute, Federal Research Institute for Animal Health, Osmania University, University of Southern Denmark, Wageningen University & Research
Pages: 386-396
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Nature Immunology
Volume: 19
Issue number: 4
ISSN (Print): 1529-2908
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.05 SJR 14.007 SNIP 4.019
Web of Science (2017): Impact factor 21.809
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 12.04 SJR 15.21 SNIP 3.92
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 12.53 SJR 11.699 SNIP 3.768
BFI (2014): BFI-level 2
Web of Science (2014): Impact factor 20.004
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 17.35 SJR 15.038 SNIP 5.13
Web of Science (2013): Impact factor 24.973
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 16.67 SJR 18.857 SNIP 4.172
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 15.97 SJR 18.437 SNIP 3.926