Recent progress towards a quantitative description of filamentary SOL transport

Recent progress towards a quantitative description of filamentary SOL transport
A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed.

General information
State: Published
Organisations: Plasma Physics and Fusion Energy, Department of Physics, Max-Planck-Institut fur Plasmaphysik, Swiss Federal Institute of Technology Lausanne, Culham Science Centre, Aalto University, Association EURATOM-IPP.CR, VTT Technical Research Center of Finland
Number of pages: 14
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nuclear Fusion
Volume: 57
Issue number: 5
Article number: 056044
ISSN (Print): 0029-5515
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.13 SJR 0.759 SNIP 1.424
Web of Science (2017): Impact factor 4.057
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.62 SJR 1.284 SNIP 1.416
Web of Science (2016): Impact factor 3.307
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.88 SJR 1.51 SNIP 1.62
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.2 SJR 1.907 SNIP 1.667
Web of Science (2014): Impact factor 3.062
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.83 SJR 1.366 SNIP 1.516
Web of Science (2013): Impact factor 3.243
ISI indexed (2013): ISI indexed yes