Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles - DTU Orbit (13/05/2018)

Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles

Compartmentalization is a key feature of biological cells which conduct their metabolic activity in individual steps isolated in distinct, separated compartments. The creation of architectures containing multiple compartments with a structure that resembles that of a biological cell has generated significant research attention and these assemblies are proposed as candidate materials for a range of biomedical applications. In this Review article, the recent successes of multicompartiment architectures as carriers for the delivery of therapeutic cargo or the creation of micro- and nanoreactors that mimic metabolic activities, thus acting as artificial cells or organelles, are discussed. The developed technologies to assemble such complex architectures are outlined, the multicompartiment carriers' properties which contribute to their performance in diverse applications are discussed, and their successful applications are highlighted. Finally, future directions and developments in the field are suggested.

General information

- **State:** Published
- **Organisations:** Department of Micro- and Nanotechnology, Colloids and Biological Interfaces
- **Authors:** York-Durán, M. J. (Intern), Gallardo, M. G. (Intern), Labay, C. P. (Intern), Urquhart, A. (Intern), Andresen, T. L. (Intern), Hosta-Rigau, L. (Intern)
- **Number of pages:** 15
- **Pages:** 199-213
- **Publication date:** 2017
- **Main Research Area:** Technical/natural sciences

Publication information

- **Journal:** Colloids and Surfaces B: Biointerfaces
- **Volume:** 152
- **ISSN (Print):** 0927-7765
- **Ratings:**
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): SJR 1.058 SNIP 1.302 CiteScore 4.42
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): SJR 1.083 SNIP 1.242 CiteScore 4.26
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): SJR 1.199 SNIP 1.554 CiteScore 4.53
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): SJR 1.251 SNIP 1.585 CiteScore 4.64
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): SJR 1.229 SNIP 1.344 CiteScore 3.74
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): SJR 1.031 SNIP 1.254 CiteScore 3.49
 - ISI indexed (2011): ISI indexed yes
 - Web of Science (2011): Indexed yes
 - BFI (2010): BFI-level 1
 - Scopus rating (2010): SJR 0.956 SNIP 1.152
 - BFI (2009): BFI-level 1
 - Scopus rating (2009): SJR 0.868 SNIP 1.144
 - BFI (2008): BFI-level 1
 - Scopus rating (2008): SJR 0.959 SNIP 1.125
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.854 SNIP 1.04
Scopus rating (2006): SJR 0.719 SNIP 0.855
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.707 SNIP 0.921
Scopus rating (2004): SJR 0.596 SNIP 0.824
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.696 SNIP 0.998
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.794 SNIP 0.982
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.697 SNIP 0.867
Scopus rating (2000): SJR 0.51 SNIP 0.688
Scopus rating (1999): SJR 0.435 SNIP 0.731

Original language: English
Artificial cells, Cell mimicry, Encapsulated enzymatic reactions, Microreactors, Multi-compartment carriers
DOIs:
10.1016/j.colsurfb.2017.01.014
Source: FindIt
Source-ID: 2351236065
Publication: Research - peer-review › Journal article – Annual report year: 2017