Recent advances in blood flow vector velocity imaging

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2011

NullPointerException

View graph of relations

A number of methods for ultrasound vector velocity imaging are presented in the paper. The transverse oscillation (TO) method can estimate the velocity transverse to the ultrasound beam by introducing a lateral oscillation in the received ultrasound field. The approach has been thoroughly investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method with magnetic resonance phase contrast angiography (MRA) revealed a correlation between the stroke volume estimated by TO and MRA of 0.91 (p<;0.01) with an equation for the line of regression given as: MRA = 1.1 · TO-0.4 ml. Several clinical examples of complex flow in e.g. bifurcations and around valves have been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle tracking. The key advantages of these techniques are very fast imaging that can attain an order of magnitude higher precision than conventional methods. SA flow imaging was implemented on the experimental scanner RASMUS using an 8-emission spherical emission sequence and reception of 64 channels on a BK Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates the benefits of fast vector flow imaging. A method for extending the 2D TO method to 3D vector velocity estimation is presented and the implications for future vector velocity imagi- g is indicated.

Original languageEnglish
Title2011 IEEE International Ultrasonics Symposium
PublisherIEEE
Publication date2011
Pages262 - 271
ISBN (print)978-1-4577-1253-1
DOIs
StatePublished

Conference

Conference2011 IEEE International Ultrasonics Symposium
CountryUnited States
CityOrlando, FL
Period18/10/1121/10/11
Internet addresshttp://ewh.ieee.org/conf/ius_2011/
CitationsWeb of Science® Times Cited: 0

Keywords

  • Apertures, Estimation , Image color analysis , Imaging, Oscillators , Ultrasonic imaging , Vectors
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5865569