Real-time remedial action against aperiodic small signal rotor angle instability

This paper presents a method that in real-time determines remedial actions, which restore stable operation with respect to aperiodic small signal rotor angle stability (ASSRAS) when insecure or unstable operation has been detected. An ASSRAS assessment method is used to monitor the stability boundary for each generator in real-time. The ASSRAS boundary represents the condition when a generator reaches the maximum steady state active power injection. The proposed control method exploits analytically derived expressions for the ASSRAS boundary and other characteristic curves in the injection impedance plane to determine an active power redispatch among selected generators to restore stable and secure operation. Since the method is purely based on analytically derived expression, the computation of the remedial actions is fast and well suited for real-time operation. The method was tested on the IEEE 14-bus and the Nordic32 test systems where results show that the method can efficiently determine the required active power redispatch to avoid an imminent instability.
Web of Science (2011): Impact factor 2.678
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.708 SNIP 2.759
Web of Science (2010): Impact factor 2.355
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.622 SNIP 2.675
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.309 SNIP 2.45
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.12 SNIP 2.48
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.147 SNIP 2.259
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.41 SNIP 2.482
Scopus rating (2004): SJR 0.938 SNIP 2.807
Scopus rating (2003): SJR 2.078 SNIP 2.607
Scopus rating (2002): SJR 1.404 SNIP 2.284
Scopus rating (2001): SJR 1.553 SNIP 1.847
Scopus rating (2000): SJR 0.515 SNIP 3.179
Scopus rating (1999): SJR 0.475 SNIP 1.644
Original language: English
Keywords: IEEE standards, load dispatching, power system security, power system stability, rotors, Components, Circuits, Devices and Systems, Power, Energy and Industry Applications, active power redispatch, aperiodic small signal rotor angle instability, Generators, IEEE 14-bus test system, Impedance, maximum steady state active power injection, Nordic32 test system, Power system control, power system generation redispatch, real-time remedial action, Real-time systems, remedial action schemes, secure operation, Security, Stability analysis, stability boundary monitoring, stable operation, Steady-state, Electric generators, Restoration, Stability, Characteristic curve, Control methods, Impedance plane, Real-time operation, Remedial actions, Rotor angle stability, Stability boundaries, Stable operation, Rotors (windings)
Electronic versions:
hkkr_150215_RAM.pdf
DOIs:
10.1109/TPWRS.2015.2404872
Source: FindIt
Source-ID: 274311657
Research output: Research - peer-review › Journal article – Annual report year: 2016