Real-Time Probing of Structural Dynamics by Interaction between Chromophores

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Documents

DOI

View graph of relations

We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond timeresolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited electronic state of the radical cation. In this state a coherent torsional vibration of the bromomethylene groups with a period of 700 fs is started and probed by photoinduced fragmentation of the molecular cation. The vibrational coherence dephases with the decay of the excited state to the ground state of the cation in 1.6 ps. The real-time probing of the excited-state dynamics is made possible by exploiting the interaction between the two bromine chromophores and its dependence on molecular conformation. This experiment therefore illustrates the applicability of the concept of probing ultrafast molecular dynamics using the intramolecular interaction between two chromophores.
Original languageEnglish
JournalJournal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
Publication date2011
Volume115
Pages12120-12125
ISSN1089-5639
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 1
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6374646