Real-time impact of power balancing on power system operation with large scale integration of wind power - DTU Orbit (19/04/2019)

Real-time impact of power balancing on power system operation with large scale integration of wind power

Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance between generation and load demand. In addition, the active power balance is also controlled through automatic generation control, where coordinated control strategy between combined heat and power plants and wind power plant enhances the secure power system operation. The developed algorithm emulating the control room response, to deal with real-time power imbalance, is applied and investigated on the future Danish power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed and discussed by means of simulations for different possible scenarios.

General information
Publication status: Published
Organisations: Department of Wind Energy, Integration & Planning
Contributors: Basit, A., Hansen, A. D., Sørensen, P. E., Giannopoulos, G.
Pages: 202-210
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Modern Power Systems and Clean Energy (Online)
Volume: 5
Issue number: 2
ISSN (Print): 2196-5420
Ratings:
Scopus rating (2017): CiteScore 3.81
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Real_time_impact_of_power.pdf
DOIs: 10.1007/s40565-015-0163-6

Bibliographical note
© The Author(s) 2015. This article is published with open access at Springerlink.com
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review