Real-time fault detection and diagnosis using sparse principal component analysis - DTU Orbit (22/12/2018)

Real-time fault detection and diagnosis using sparse principal component analysis

With the emergence of smart factories, large volumes of process data are collected and stored at high sampling rates for improved energy efficiency, process monitoring and sustainability. The data collected in the course of enterprise-wide operations consists of information from broadly deployed sensors and other control equipment. Interpreting such large volumes of data with limited workforce is becoming an increasingly common challenge. Principal component analysis (PCA) is a widely accepted procedure for summarizing data while minimizing information loss. It does so by finding new variables, the principal components (PCs) that are linear combinations of the original variables in the dataset. However, interpreting PCs obtained from many variables from a large dataset is often challenging, especially in the context of fault detection and diagnosis studies. Sparse principal component analysis (SPCA) is a relatively recent technique proposed for producing PCs with sparse loadings via variance-sparsity trade-off. Using SPCA, some of the loadings on PCs can be restricted to zero. In this paper, we introduce a method to select the number of non-zero loadings in each PC while using SPCA. The proposed approach considerably improves the interpretability of PCs while minimizing the loss of total variance explained. Furthermore, we compare the performance of PCA- and SPCA-based techniques for fault detection and fault diagnosis. The key features of the methodology are assessed through a synthetic example and a comparative study of the benchmark Tennessee Eastman process.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, University of California at Davis
Contributors: Gajjar, S., Kulahci, M., Palazoglu, A.
Number of pages: 17
Pages: 112-128
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Process Control
Volume: 67
ISSN (Print): 0959-1524
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.85 SJR 1.108 SNIP 1.971
Web of Science (2017): Impact factor 2.787
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.41 SJR 1.037 SNIP 2.138
Web of Science (2016): Impact factor 2.7
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.35 SJR 1.346 SNIP 2.028
Web of Science (2015): Impact factor 2.216
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.92 SJR 1.397 SNIP 2.642
Web of Science (2014): Impact factor 2.653
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.47 SJR 1.421 SNIP 2.537
Web of Science (2013): Impact factor 2.179
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.39 SJR 1.435 SNIP 2.883
Web of Science (2012): Impact factor 1.805
ISI indexed (2012): ISI indexed yes