Reactive power and voltage control based on general quantum genetic algorithms - DTU Orbit (14/12/2018)

Reactive power and voltage control based on general quantum genetic algorithms

This paper presents an improved evolutionary algorithm based on quantum computing for optimal steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines the optimal settings of control variables, such as generator voltages, transformer taps and shunt VAR compensation devices for optimal reactive power and voltage control of IEEE 30-bus and 118-bus systems. The results of GQ-GA are compared with those given by the state-of-the-art evolutionary computational techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions.

General information
State: Published
Organisations: Electric Energy Systems, Department of Electrical Engineering
Contributors: Vlachogiannis, I. (., Østergaard, J.
Pages: 6118-6126
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Expert Systems with Applications
Volume: 36
Issue number: 3
ISSN (Print): 0957-4174
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.22 SJR 1.271 SNIP 2.449
Web of Science (2017): Impact factor 3.768
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.7 SJR 1.343 SNIP 2.463
Web of Science (2016): Impact factor 3.928
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.11 SJR 1.473 SNIP 2.522
Web of Science (2015): Impact factor 2.981
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.63 SJR 1.476 SNIP 2.564
Web of Science (2014): Impact factor 2.24
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.31 SJR 1.305 SNIP 2.348
Web of Science (2013): Impact factor 1.965
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.38 SJR 1.148 SNIP 2.419
Web of Science (2012): Impact factor 1.854
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.76 SJR 1.113 SNIP 2.541
Web of Science (2011): Impact factor 2.203
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.046 SNIP 1.807
Web of Science (2010): Impact factor 1.926
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.922 SNIP 2.543
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.123 SNIP 2.203
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.021 SNIP 1.695
Scopus rating (2006): SJR 0.673 SNIP 1.354
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.683 SNIP 1.655
Scopus rating (2004): SJR 0.563 SNIP 1.79
Scopus rating (2003): SJR 0.479 SNIP 1.187
Scopus rating (2002): SJR 0.388 SNIP 0.878
Scopus rating (2001): SJR 0.297 SNIP 0.729
Scopus rating (2000): SJR 0.346 SNIP 0.728
Scopus rating (1999): SJR 0.292 SNIP 0.77
Original language: English
Keywords: Genetic algorithm, Reactive power control, Quantum mechanics computation, Steady-state performance, Meta-heuristic techniques
DOIs:
10.1016/j.eswa.2008.07.070
Source: orbit
Source-ID: 261531
Research output: Research - peer-review > Journal article – Annual report year: 2009