Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures

The reaction of hydroxyl radical with ammonia in aqueous solutions has been studied by pulse radiolysis in the temperature range 20-200-degrees-C. The rate constant of the reaction was determined by monitoring the decay of the OH radical absorption at 260 nm for different concentrations of ammonia. At room temperature the rate constant is $\left(9.7 \pm 1\right) \times 10^7$ dm3 mol$^{-1}$ s$^{-1}$. In the whole range of temperatures the rate constant follows Arrhenius law with an activation energy of $\left(5.7 \pm 1\right)$ kJ mol$^{-1}$. The protective effect of dissolved hydrogen on the radiolytic decomposition of ammonia is discussed.

General information
State: Published
Organisations: Risø National Laboratory for Sustainable Energy
Contributors: Hickel, B., Sehested, K.
Pages: 355-357
Publication date: 1992
Peer-reviewed: Yes

Publication information
Journal: Radiation Physics and Chemistry
Volume: 39
Issue number: 4
ISSN (Print): 0969-806X
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.43 SJR 0.54 SNIP 1.02
Web of Science (2017): Impact factor 1.435
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.34 SJR 0.484 SNIP 0.947
Web of Science (2016): Impact factor 1.315
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.32 SJR 0.53 SNIP 1.01
Web of Science (2015): Impact factor 1.207
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.39 SJR 0.506 SNIP 1.093
Web of Science (2014): Impact factor 1.38
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.45 SJR 0.593 SNIP 1.079
Web of Science (2013): Impact factor 1.189
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.42 SJR 0.593 SNIP 1.13
Web of Science (2012): Impact factor 1.375
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.4 SJR 0.572 SNIP 1.033
Web of Science (2011): Impact factor 1.227
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.516 SNIP 0.893
Web of Science (2010): Impact factor 1.132
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.515 SNIP 0.994
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.51 SNIP 0.733
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.44 SNIP 0.764
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.419 SNIP 0.762
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.48 SNIP 0.711
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.492 SNIP 0.941
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.481 SNIP 0.891
Scopus rating (2002): SJR 0.502 SNIP 0.967
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.406 SNIP 0.781
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.346 SNIP 0.795
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.334 SNIP 0.719
Original language: English
Source: orbit
Source-ID: 290324
Research output: Research - peer-review › Journal article – Annual report year: 1992