Rapid resistome mapping using nanopore sequencing

The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.

General information

Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Research Groups, iLoop, University Medical Centre Utrecht
Contributors: van der Helm, E., Imamovic, L., Ellabaan, M. M. H., van Schaik, W., Koza, A., Sommer, M. O. A.
Number of pages: 8
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Nucleic acids research
Volume: 45
Issue number: 8
Article number: gkw1328
ISSN (Print): 0305-1048
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 10.84 SJR 9.025 SNIP 3.028
Web of Science (2017): Impact factor 11.561
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Rapid_resistome.pdf
DOIs:
10.1093/nar/gkw1328

Bibliographical note

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Source: FindIt
Source-ID: 2350102398
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review