Rapid resistome mapping using nanopore sequencing - DTU Orbit (30/08/2017)

Rapid resistome mapping using nanopore sequencing

The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.

General information
State: E-pub ahead of print
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Research Groups, iLoop, University Medical Centre Utrecht
Authors: van der Helm, E. (Intern), Imamovic, L. (Intern), Ellabaan, M. M. H. (Intern), van Schaik, W. (Ekstern), Koza, A. (Intern), Sommer, M. O. A. (Intern)
Number of pages: 8
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Nucleic Acids Research
Volume: 45
Issue number: 8
Article number: gkw1328
ISSN (Print): 0305-1048
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.28 SJR 7.397 SNIP 2.657
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 7.239 SNIP 2.639 CiteScore 9.48
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 6.576 SNIP 2.568 CiteScore 8.74
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 6.582 SNIP 2.266 CiteScore 8.46
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 6.13 SNIP 2.392 CiteScore 8.62
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 5.758 SNIP 2.172 CiteScore 7.86
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 5.24 SNIP 2.034
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 5.571 SNIP 1.869
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 4.641 SNIP 1.557
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 4.86 SNIP 1.787
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 4.55 SNIP 2.04
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 4.992 SNIP 2.152
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 4.809 SNIP 1.971
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.108 SNIP 1.862
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.12 SNIP 1.535
Scopus rating (2001): SJR 0.131 SNIP 1.402
Scopus rating (2000): SJR 0.141 SNIP 1.672
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.149 SNIP 1.562
Original language: English
Electronic versions:
Rapid_resistome.pdf
DOIs:
10.1093/nar/gkw1328

Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Relations
Activities:
Functional Metagenomic Selections for Antibiotic Resistance Gene Profiling
Rapid resistome mapping using Nanopore sequencing
Press / Media items:
Ny metode kan give hurtigere måling af antibiotikaresistens i tarmen
Source: FindIt
Source-ID: 2350102398
Publication: Research - peer-review › Journal article – Annual report year: 2017