Railway capacity and expansion analysis using time discretized paths

When making investments in railway infrastructure it is important to be able to identify the limits for freight transportation in order to not only use the infrastructure in the best possible way, but to also guide future capacity investments. This paper presents a model to assess the capacity of railway freight transportation on a long term strategic level. The model uses an hourly time discretization and analyses the impact of railway network expansions based on future demand forecasts. It provides an optimal macroscopic freight train schedule and can indicate the time and place of any congestion. In addition, two expansions of the primary model are developed. The first can be used to determine the minimal number of expansions needed to ensure all freight can be feasibly routed, while the second can be used to schedule freight trains at hours not congested by passenger trains using variable penalties for the different passenger busy time slots. As part of a European Union project, all models are applied to a realistic case study that focuses on analyzing the capacity of railway network, in Denmark and Southern Sweden using demand forecasts for 2030. Results suggest that informative solutions can be found quickly with the proposed approach.

The project was partly funded by the EU-project EWTC-II.