QuickChecking static analysis properties

QuickChecking static analysis properties
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs, to verified fixed point checking. In this paper, we demonstrate how quickchecking can be useful to test a range of static analysis properties with limited effort. We show how to check a range of algebraic lattice properties, to help ensure that an implementation follows the formal specification of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, eg, monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Formal Methods, Aarhus University
Contributors: Midtgaard, J., Møller, A.
Number of pages: 23
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Software Testing, Verification and Reliability
Volume: 27
Issue number: 6
Article number: e1640
ISSN (Print): 0960-0833
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.85 SJR 0.335 SNIP 1.593
Web of Science (2017): Impact factor 1.556
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.03 SJR 0.442 SNIP 1.445
Web of Science (2016): Impact factor 1.588
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.6 SJR 0.798 SNIP 2.889
Web of Science (2015): Impact factor 1.082
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.19 SJR 0.749 SNIP 2.086
Web of Science (2014): Impact factor 1.348
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.11 SJR 0.496 SNIP 2.148
Web of Science (2013): Impact factor 1.2
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.79 SJR 0.603 SNIP 1.827
Web of Science (2012): Impact factor 1.043
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.86 SJR 0.579 SNIP 2.519
Web of Science (2011): Impact factor 0.957
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.552 SNIP 1.567
Web of Science (2010): Impact factor 0.762
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.604 SNIP 1.917
BFI (2008): BFI-level 2