Quenching of TiO2 photo catalysis by silver nanoparticles

Quenching of TiO2 photo catalysis by silver nanoparticles

The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have important consequences for photocatalysis. Here the effect of silver nanoparticles of a size up to 30nm and at maximum 0.50 monolayers on the photocatalytic oxidation of ethylene on TiO2 is studied. Since the plasmon resonance energy of silver nanoparticles is comparable with the TiO2 band gap, dipole–dipole interaction converts excitons into heat at the silver nanoparticle. This indicates that plasmonic interaction with TiO2 semiconductor catalysts can reduce the photo catalytic activity considerably.

General information
State: Published
Organisations: Department of Physics, Experimental Surface and Nanomaterials Physics, Center for Electron Nanoscopy, Center for Individual Nanoparticle Functionality
Pages: 10-14
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Journal of Photochemistry and Photobiology, A: Chemistry
Volume: 230
Issue number: 1
ISSN (Print): 1010-6030
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.76 SJR 0.689 SNIP 0.819
Web of Science (2017): Impact factor 2.891
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.6 SJR 0.749 SNIP 0.856
Web of Science (2016): Impact factor 2.625
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.47 SJR 0.725 SNIP 0.883
Web of Science (2015): Impact factor 2.477
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.39 SJR 0.802 SNIP 1.006
Web of Science (2014): Impact factor 2.495
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.5 SJR 0.835 SNIP 1.025
Web of Science (2013): Impact factor 2.291
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.51 SJR 0.936 SNIP 1.126
Web of Science (2012): Impact factor 2.416
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.84 SJR 0.978 SNIP 1.354
Web of Science (2011): Impact factor 2.421
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.03 SNIP 1.056
Web of Science (2010): Impact factor 2.243
BFI (2009): BFI-level 1