Quantized conductance in atom-sized wires between two metals

Publication: Research - peer-reviewJournal article – Annual report year: 1995

View graph of relations

We present experimental and theoretical results for the conductance and mechanical properties of atom-sized wires between two metals. The experimental part is based on measurements with a scanning tunneling microscope (STM) where a point contact is created by indenting the tip into a gold surface. When the tip is retracted, a 10-20 Angstrom long nanowire is formed. Our measurements of the conductance of nanowires show clear signs of a quantization in units of 2e(2)/h. The scatter around the integer values increases considerably with the number of quanta, and typically it is not possible to observe more than up to four quanta in these experiments. A detailed discussion is given of the statistical methods used in the analysis of the experimental data. The theoretical part of the paper addresses some questions posed by the experiment: Why can conductance quantization be observed, what is the origin of the scatter in the experimental data, and what is the origin of the scaling of the scattering with the number of conductance quanta? The theoretical discussion is based on a free-electron-like model where scattering from the boundary of the nanowire is included. The configurations of the nanowires are deduced from molecular dynamics simulations, which also give information about the mechanical properties of the system. We show that such a model can account semiquantitatively for several of the observed effects. One of the main conclusions of the theoretical analysis is that,; due to the plastic deformation of the nanowires formed by the STM, the typical length scale of the variations in the shape of the boundary is not an atomic radius but rather bye times that value. This is the reason why scattering is sufficiently small to make conductance quantization observable by STM.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Publication date1995
Volume52
Issue11
Pages8499-8514
ISSN0163-1829
DOIs
StatePublished

Bibliographical note

Copyright (1995) by the American Physical Society.

CitationsWeb of Science® Times Cited: 226

Keywords

  • ADHESION, TRANSPORT, SCALE, TRANSITION, POINT CONTACTS, SURFACES, BALLISTIC-RESISTANCE, SCANNING-TUNNELING-MICROSCOPY, STEPS, CONSTRICTIONS
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 3817909