Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms. Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high variability in the data despite careful data screening. A number of ensemble averages are simulated with a range of wind farm and computational fluid dynamics models and compared to observed wake losses. All models were able to capture wake width to some degree, and some models also captured the decrease of power output moving through the wind farm. Root-mean-square errors indicate a generally better model performance for higher wind speeds (10 rather than 6 m s−1) and for direct down the row flow than for oblique angles. Despite this progress, wake modeling of large wind farms is still subject to an unacceptably high degree of uncertainty.
Original languageEnglish
JournalJournal of Atmospheric and Oceanic Technology
Publication date2010
Volume27
Issue8
Pages1302-1317
ISSN0739-0572
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 33

Keywords

  • Wind turbine structures, Wind Energy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4655444