Quantification of complex blood flow using real-time in vivo vector flow ultrasound

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2010

Documents

DOI

View graph of relations

A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical ultrasound. From the same data the mean standard deviation of the flow angles (MSTDA) were calculated and compared to the expert evaluations. Comparison between the combined experts evaluations and the MSTDA was performed. Using linear regression analysis, a correlation coefficient of 0.925 was found. The upper and lower bounds for a 95% confidence interval of 0.974 and 0.792 respectively, were calculated. The MSTDA was below 25 for the common carotid artery and above 25 for the carotid bulb. Thus, the MSTDA value can distinguishing complex flow from non-complex flow and can be used as the basis for automatic detection of complex flow patterns.
Original languageEnglish
TitleProceedings of IEEE International Ultrasonics Symposium
PublisherIEEE
Publication date2010
Pages1088-1091
ISBN (print)978-1-4577-0380-5
DOIs
StatePublished

Conference

Conference2010 IEEE International Ultrasonics Symposium
CountryUnited States
CitySan Diego, California
Period11/10/1014/10/10
Internet addresshttp://ewh.ieee.org/conf/ius_2010/

Bibliographical note

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5633783