Quality control and process capability assessment for injection-moulded micro mechanical parts

Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measured using an optical coordinate measuring machine, which guarantees fast surface scans suitable for inline quality control. The uncertainty assessment of the measurements is calculated and three analyses are carried out and discussed in order to investigate the influence parameters in optical coordinate metrology. The estimation of the total variability of the optical measurements and the instrument repeatability are reported; moreover, the measurement system capability is evaluated according to the measurement system capability indices C_g and C_{gk}.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Gasparin, S., Tosello, G., Hansen, H. N., Islam, A.
Pages: 1295–1303
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: International Journal of Advanced Manufacturing Technology
Volume: 66
ISSN (Print): 0268-3768
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.8 SJR 0.994 SNIP 1.697
Web of Science (2017): Impact factor 2.601
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.3 SJR 1.046 SNIP 1.608
Web of Science (2016): Impact factor 2.209
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.8 SJR 0.889 SNIP 1.325
Web of Science (2015): Impact factor 1.568
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.03 SJR 1.082 SNIP 1.841
Web of Science (2014): Impact factor 1.458
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.26 SJR 1.134 SNIP 2.131
Web of Science (2013): Impact factor 1.779
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.75 SJR 0.971 SNIP 2.099
Web of Science (2012): Impact factor 1.205
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.61 SJR 0.817 SNIP 1.673
Web of Science (2011): Impact factor 1.103
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.785 SNIP 1.445
Web of Science (2010): Impact factor 1.071
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.797 SNIP 1.384
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.52 SNIP 1.029
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.441 SNIP 0.747
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.477 SNIP 1.109
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.608 SNIP 0.944
Scopus rating (2004): SJR 0.56 SNIP 0.9
Scopus rating (2003): SJR 0.653 SNIP 0.911
Scopus rating (2002): SJR 0.687 SNIP 1.003
Scopus rating (2001): SJR 0.462 SNIP 1.064
Scopus rating (2000): SJR 0.583 SNIP 0.91
Scopus rating (1999): SJR 0.606 SNIP 0.918
Original language: English
Keywords: Dimensional metrology, Uncertainty assessment, Quality control, Measurement system capability
DOIs:
10.1007/s00170-012-4407-6
Source: dtu
Source-ID: u::4731
Research output: Research - peer-review \ Journal article – Annual report year: 2012