Prospects for large scale electricity storage in Denmark

In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising with high wind power penetration. This paper presents a review of the electricity storage technologies relevant for large power systems. The paper also presents an estimation of the economic feasibility of electricity storage using the west Danish power market area as a case.

General information
State: Published
Organisations: Composites and Materials Mechanics, Materials Research Division, Risø National Laboratory for Sustainable Energy, Electrochemistry, Fuel Cells and Solid State Chemistry Division
Contributors: Krog Ekman, C., Jensen, S. H.
Pages: 1140-1147
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Energy Conversion and Management
Volume: 51
Issue number: 6
ISSN (Print): 0196-8904
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.85 SJR 2.537 SNIP 2.233
Web of Science (2017): Impact factor 6.377
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.04 SJR 2.232 SNIP 2.109
Web of Science (2016): Impact factor 5.589
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.24 SJR 2.023 SNIP 2.079
Web of Science (2015): Impact factor 4.801
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.35 SJR 1.789 SNIP 2.791
Web of Science (2014): Impact factor 4.38
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.49 SJR 1.613 SNIP 2.534
Web of Science (2013): Impact factor 3.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.72 SJR 1.674 SNIP 2.242
Web of Science (2012): Impact factor 2.775
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.03 SJR 1.24 SNIP 1.82
Web of Science (2011): Impact factor 2.216
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.35 SNIP 1.735
Web of Science (2010): Impact factor 2.072
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.302 SNIP 1.798
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.471 SNIP 1.886
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.186 SNIP 1.807
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.294 SNIP 1.797
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.542 SNIP 1.769
Scopus rating (2004): SJR 1.043 SNIP 1.467
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.879 SNIP 1.382
Scopus rating (2002): SJR 0.972 SNIP 1.467
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.794 SNIP 0.86
Scopus rating (2000): SJR 0.568 SNIP 0.72
Scopus rating (1999): SJR 0.512 SNIP 0.731
Original language: English
Keywords: Batteries and carbon-free energy storage, Materials and energy storage
DOIs:
10.1016/j.enconman.2009.12.023
Source: orbit
Source-ID: 256992
Research output: Research - peer-review; Journal article – Annual report year: 2010