Probabilistic runoff volume forecasting in risk-based optimization for RTC of urban drainage systems

This article demonstrates the incorporation of stochastic grey-box models for urban runoff forecasting into a full-scale, system-wide control setup where setpoints are dynamically optimized considering forecast uncertainty and sensitivity of overflow locations in order to reduce combined sewer overflow risk. The stochastic control framework and the performance of the runoff forecasting models are tested in a case study in Copenhagen (76 km² with 6 sub-catchments and 7 control points) using 2-h radar rainfall forecasts and inlet flows to control points computed from a variety of noisy/oscillating in-sewer measurements. Radar rainfall forecasts as model inputs yield considerably lower runoff forecast skills than "perfect" gauge-based rainfall observations (ex-post hindcasting). Nevertheless, the stochastic grey-box models clearly outperform benchmark forecast models based on exponential smoothing. Simulations demonstrate notable improvements of the control efficiency when considering forecast information and additionally when considering forecast uncertainty, compared with optimization based on current basin fillings only.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Urban Water Systems, Department of Environmental Engineering, Dynamical Systems, Krüger A/S
Authors: Löwe, R. (Intern), Vezzaro, L. (Intern), Mikkelsen, P. S. (Intern), Grum, M. (Ekstern), Madsen, H. (Intern)
Pages: 143-158
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Environmental Modelling & Software
Volume: 80
ISSN (Print): 1364-8152
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.8 SJR 1.936 SNIP 2.112
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.119 SNIP 2.172 CiteScore 4.67
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.065 SNIP 2.483 CiteScore 5.04
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.082 SNIP 2.458 CiteScore 4.8
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.829 SNIP 2.012 CiteScore 3.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.68 SNIP 2.096 CiteScore 3.52
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.684 SNIP 2.221
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.33 SNIP 1.965
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.131 SNIP 1.892
Scopus rating (2007): SJR 1.125 SNIP 1.907
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.962 SNIP 1.743
Scopus rating (2005): SJR 0.927 SNIP 1.595
Scopus rating (2004): SJR 0.49 SNIP 1.162
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.471 SNIP 1.076
Scopus rating (2002): SJR 0.421 SNIP 0.829
Scopus rating (2001): SJR 0.368 SNIP 0.569
Scopus rating (2000): SJR 0.262 SNIP 0.548
Scopus rating (1999): SJR 0.246 SNIP 0.513
Original language: English
Stochastic grey-box model, Probabilistic forecasting, Real-time control, Urban hydrology, Radar rainfall, Storm water management
DOIs:
10.1016/j.envsoft.2016.02.027
Source: PublicationPreSubmission
Source-ID: 122185110
Publication: Research - peer-review › Journal article – Annual report year: 2016