Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models - DTU Orbit (01/01/2019)

Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models

Forecasting of the solar irradiance is a key feature in order to increase the penetration rate of solar energy into the energy grids. Indeed, the anticipation of the fluctuations of the solar renewables allows a better management of the production means of electricity and a better operation of the grid-connected storage systems. If numerous methods for forecasting the mean of the solar irradiance were recently developed, there are only few works dedicated to the evaluation of prediction intervals associated to these point forecasts.

Time series of solar irradiance and more specifically of clear sky index show some similarities with that of financial time series. The aim of this paper is to assess the performances of a commonly used combination of two linear models (ARMA and GARCH) in econometrics in order to provide probabilistic forecasts of solar irradiance. In addition, a recursive estimation of the parameters of the models has been set up in order to provide a framework that can be applied easily in an operational context.

A comprehensive testing procedure has been used to assess both point forecasts and probabilistic forecasts. Using only the past records of the solar irradiance, the proposed model is able to perform point forecasts as accurately as other methods based on machine learning techniques. Moreover, the recursive ARMA-GARCH model is easier to set-up and it gives additional information about the uncertainty of the forecasts. Even if some strong assumption has been made regarding the statistical distribution of the error, the reliability of the probabilistic forecasts stands in the same order of magnitude as other works done in the field of solar forecasting.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science , Dynamical Systems, Universite de La Reunion
Contributors: David, M., Ramahatana, F., Trombe, P., Lauret, P.
Pages: 55-72
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Solar Energy
Volume: 133
Issue number: August
ISSN (Print): 0038-092X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.89 SJR 1.615 SNIP 1.791
Web of Science (2017): Impact factor 4.374
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.52 SJR 1.504 SNIP 1.746
Web of Science (2016): Impact factor 4.018
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.61 SJR 1.912 SNIP 2.085
Web of Science (2015): Impact factor 3.685
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.77 SJR 1.962 SNIP 2.671
Web of Science (2014): Impact factor 3.469
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.44 SJR 1.99 SNIP 2.85
Web of Science (2013): Impact factor 3.541
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.65 SJR 1.605 SNIP 2.517
Web of Science (2012): Impact factor 2.952
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.19 SJR 1.283 SNIP 2.178
Web of Science (2011): Impact factor 2.475
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.369 SNIP 2.16
Web of Science (2010): Impact factor 2.172
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.265 SNIP 2.158
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.684 SNIP 1.994
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.685 SNIP 2.085
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.594 SNIP 2.229
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.233 SNIP 1.601
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.523 SNIP 1.702
Scopus rating (2003): SJR 1.152 SNIP 1.423
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.331 SNIP 1.561
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.292 SNIP 1.277
Scopus rating (2000): SJR 0.77 SNIP 1.065
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.688 SNIP 1.253

Original language: English
Keywords: Probabilistic solar forecasts, Recursive least square, Clear sky index, ARMA, GARCH, Operational framework

Electronic versions:
Publi_ARMA_GARCH_v4.pdf

DOIs:
10.1016/j.solener.2016.03.064

Source: FindIt
Source-ID: 277491665

Research output: Research - peer-review › Journal article – Annual report year: 2016