Prey perception in feeding-current feeding copepods - DTU Orbit (23/12/2018)

Prey perception in feeding-current feeding copepods: Reply to comment

We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey concentrations, and that chemical prey perception is feasible if prey cells release dissolved organic material in short-lasting but intense bursts. We demonstrate that mechanoreception at a very short range is sufficient to sustain a living, even in a dilute ocean. Further, if chemoreception requires that prey cells have short intense leakage burst, only a very small fraction of prey cells would be available to the copepod at any instance in time and, thus would be inefficient at low prey concentration. Finally, we report a few new observations of prey capture in two species of copepods, Temora longicornis and Centropages hamatus, offered a 45-μm sized dinoflagellate at very low concentration. The observed short prey detection distances, up to a few prey cell radii, are consistent with mechanoreception and we argue briefly that near-field mechanoreception is the most likely and common prey perception mechanism in calanoid copepods.

General information

State: Published

Organisations: National Institute of Aquatic Resources, Centre for Ocean Life, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Pierre and Marie Curie University - University of Paris VI, University of Gothenburg, Consejo Superior de Investigaciones Cientificas y Tecnicas

Contributors: Kiørboe, T., Goncalves, R. J., Florian Couespel, D., van Someren Gréve, H., Saiz, E., Tiselius, P.

Pages: 1169-1171

Publication date: 2016

Peer-reviewed: Yes

Publication information

Journal: Limnology and Oceanography

Volume: 61

Issue number: 4

ISSN (Print): 0024-3590

Ratings:

BFI (2018): BFI-level 2

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 2

Scopus rating (2017): CiteScore 3.81 SJR 1.871 SNIP 1.329

Web of Science (2017): Impact factor 3.595

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 2

Scopus rating (2016): CiteScore 3.5 SJR 1.806 SNIP 1.253

Web of Science (2016): Impact factor 3.383

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 2

Scopus rating (2015): CiteScore 3.93 SJR 2.423 SNIP 1.408

Web of Science (2015): Impact factor 3.66

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 2

Scopus rating (2014): CiteScore 3.73 SJR 2.118 SNIP 1.581

Web of Science (2014): Impact factor 3.794

BFI (2013): BFI-level 2

Scopus rating (2013): CiteScore 3.98 SJR 2.244 SNIP 1.564

Web of Science (2013): Impact factor 3.615

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes

BFI (2012): BFI-level 2

Scopus rating (2012): CiteScore 3.81 SJR 2.474 SNIP 1.499

Web of Science (2012): Impact factor 3.405

ISI indexed (2012): ISI indexed yes

Web of Science (2012): Indexed yes

BFI (2011): BFI-level 2

Scopus rating (2011): CiteScore 3.59 SJR 2.398 SNIP 1.439