Preparation and Characterization of an Oral Vaccine Formulation Using Electrosprayed Chitosan Microparticles

Chitosan particles loaded with the antigen ovalbumin (OVA) and the adjuvant Quil-A were produced by electrospray, using mixtures of water/ethanol/acetic acid as a solvent. Three different chitosans designed as HMC+70, HMC+85, and HMC+90 (called as 705010, 855010, and 905010) were tested and its efficacy to be used in oral vaccine delivery applications was investigated. The morphology, size, and zeta potential of the produced particles were investigated, together with the encapsulation efficiency and release of OVA from the three chitosan formulations. Moreover, the mucoadhesion and cytotoxicity of the chitosan microparticles was examined. All the three formulations with OVA and Quil-A were in the micrometer size range and had a positive zeta potential between 46 and 75 mV. Furthermore, all the three formulations displayed encapsulation efficiencies above 80% and the release of OVA over a period of 80 h was observed to be between 38 and 47%. None of the developed formulations exhibited high mucoadhesive properties, either cytotoxicity. The formulation prepared with HMC+70, OVA, and Quil-A had the highest stability within 2 h in buffer solution, as measured by dynamic light scattering. The electrosprayed formulation consisting of HMC+70 with OVA and Quil-A showed to be the most promising as an oral vaccine system.

General information
State: Accepted/In press
Organisations: National Food Institute, Research Group for Nano-Bio Science, Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark
Contributors: Moreno, J. A. S., Panou, D., Stephansen, K., Chronakis, I. S., Boisen, A., Mendes, A. C. L., Nielsen, L. H.
Number of pages: 8
Publication date: 2 Oct 2018
Peer-reviewed: Yes

Publication information
Journal: AAPS PharmSciTech
ISSN (Print): 1530-9932
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.59 SJR 0.752 SNIP 1.101
Web of Science (2017): Impact factor 2.666
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.25 SJR 0.766 SNIP 1.034
Web of Science (2016): Impact factor 2.451
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.1 SJR 0.72 SNIP 1.025
Web of Science (2015): Impact factor 1.954
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.28 SJR 0.783 SNIP 1.203
Web of Science (2014): Impact factor 1.641
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.34 SJR 0.811 SNIP 1.251
Web of Science (2013): Impact factor 1.776
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.1 SJR 0.804 SNIP 1.146
Web of Science (2012): Impact factor 1.584
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.78 SJR 0.684 SNIP 0.828
Web of Science (2011): Impact factor 1.432
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.754 SNIP 1.028
Web of Science (2010): Impact factor 1.211