Prediction of Salmonella carcass contamination by a comparative quantitative analysis of E. coli and Salmonella during pig slaughter - DTU Orbit (22/12/2018)

Prediction of Salmonella carcass contamination by a comparative quantitative analysis of E. coli and Salmonella during pig slaughter

Faecal contamination of carcasses in the slaughterhouse is generally considered to be the source of Salmonella on pork. In this study the hygiene indicator Escherichia coli is used to quantify faecal contamination of carcasses and it is hypothesized that it can be used to predict the quantitative carcass contamination with Salmonella, when the distribution of Salmonella concentrations in faeces is known. Paired pig sample data (faecal samples and carcass swabs) were obtained from five slaughterhouses and analysed for prevalence and concentrations of E. coli and Salmonella. A simple model was developed to describe the faecal contamination of carcasses using the E. coli data. The E. coli results suggested different hygiene performances in different slaughterhouses, and showed that a model assuming that carcasses are predominantly contaminated by their own faeces was not appropriate. Observed Salmonella prevalences were low (on average 1.9% on carcasses) and between slaughterhouses the prevalences ranked differently than the hygiene performance based on the E. coli data suggested. Also, the Salmonella concentrations predicted using E. coli as a faecal indicator were lower than the observed Salmonella concentrations. It is concluded that the faecal carriage of Salmonella together with the faecal contamination of carcasses, as predicted from E. coli data in the animal faeces and hygiene performance of the slaughterhouse, is not sufficient to explain carcass contamination with Salmonella. Our extensive data set showed that other factors than the observed faecal carriage of Salmonella by the individual animals brought to slaughter, play a more important role in the Salmonella carcass contamination of pork.

General information
State: Published
Organisations: National Food Institute, Division of Epidemiology and Microbial Genomics, Division of Food Microbiology
Contributors: Nauta, M., Barfod, K., Hald, T., Sørensen, A. M. H., Emborg, H., Aabo, S.
Pages: 231-237
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: International Journal of Food Microbiology
Volume: 166
Issue number: 2
ISSN (Print): 0168-1605
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018):Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.76 SJR 1.366 SNIP 1.436
Web of Science (2017): Impact factor 3.451
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.97 SJR 1.481 SNIP 1.553
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.02 SJR 1.614 SNIP 1.683
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.62 SJR 1.493 SNIP 1.695
Web of Science (2014): Impact factor 3.082
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.8 SJR 1.612 SNIP 1.841
Web of Science (2013): Impact factor 3.155
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.7 SJR 1.603 SNIP 1.705
Web of Science (2012): Impact factor 3.425
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.63 SJR 1.607 SNIP 1.713
Web of Science (2011): Impact factor 3.327
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.61 SNIP 1.666
Web of Science (2010): Impact factor 3.143
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.475 SNIP 1.539
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.442 SNIP 1.509
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.349 SNIP 1.692
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.541 SNIP 1.788
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.511 SNIP 1.834
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.502 SNIP 1.638
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.233 SNIP 1.612
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.226 SNIP 1.289
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.031 SNIP 1.506
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.043 SNIP 1.306
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.071 SNIP 1.2
Original language: English
Keywords: Faecal indicator, Carcass swabs, Pork meat, Slaughterhouse, Hygiene
DOIs:
10.1016/j.ijfoodmicro.2013.07.014
Source: dtu
Source-ID: n:oai:DTIC-ART:elsevier/391784084::31756
Research output: Research - peer-review > Journal article – Annual report year: 2013