Prediction of liver fat in people with and without type 2 diabetes: an IMI DIRECT study - DTU Orbit (25/11/2018)

Prediction of liver fat in people with and without type 2 diabetes: an IMI DIRECT study

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in type 2 diabetes (T2D) and beyond. In NAFLD, triglycerides accumulate in hepatocytes, promoting hepatic gluconeogenesis, and thereby raising risk of T2D or exacerbating the disease pathology. Liver biopsy, MRI scans, ultrasounds and liver enzyme tests are often used for NAFLD diagnosis, but the invasive nature of biopsies, the high costs of the MRI scans and ultrasounds and the low accuracy of liver enzyme tests are significant limitations. Here, we aim to derive a prediction tool for NAFLD by applying machine learning approaches to the extensive phenotypic data obtained in participants with pre-diabetes or diabetes cohorts from IMI DIRECT.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Disease Intelligence and Molecular Evolution, Lund University, Université de Genève, Fachhochschule Frankfurt am Main - University of Applied Sciences Frankfurt, University of Oxford, University of Westminster, Italian National Research Council, University of Dundee, Eli Lilly, Imperial College London
Number of pages: 1
Pages: S581
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Diabetologia
Volume: 61
Issue number: 1S
Article number: 1189
ISSN (Print): 0012-186X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.09 SJR 3.228 SNIP 1.619
Web of Science (2017): Impact factor 6.023
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.23 SJR 3.25 SNIP 1.721
Web of Science (2016): Impact factor 6.08
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.57 SJR 3.61 SNIP 1.933
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.57 SJR 3.243 SNIP 1.964
Web of Science (2014): Impact factor 6.671
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6 SJR 3.259 SNIP 2.035
Web of Science (2013): Impact factor 6.88
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.76 SJR 3.235 SNIP 1.914
Web of Science (2012): Impact factor 6.487
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.47 SJR 3.177 SNIP 1.857
Web of Science (2011): Impact factor 6.814
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.345 SNIP 1.847
Web of Science (2010): Impact factor 6.973
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.985 SNIP 1.644
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.268 SNIP 1.845
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.8 SNIP 1.609
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.677 SNIP 1.459
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.332 SNIP 1.58
Scopus rating (2004): SJR 2.492 SNIP 1.883
Scopus rating (2003): SJR 1.977 SNIP 1.814
Scopus rating (2002): SJR 1.948 SNIP 1.76
Scopus rating (2001): SJR 2.247 SNIP 1.79
Scopus rating (2000): SJR 2.237 SNIP 1.523
Scopus rating (1999): SJR 2.087 SNIP 1.614
Original language: English
DOIs:
10.1007/s00125-018-4693-0
Research output: Research - peer-review › Conference abstract in journal – Annual report year: 2018