Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations - DTU Orbit (17/12/2018)

Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations

We show how radiological images of both single and multi material samples can be simulated using the Monte Carlo simulation tool McXtrace and how these images can be used to make a three dimensional reconstruction. Good numerical agreement between the X-ray attenuation coefficient in experimental and simulated data can be obtained, which allows us to use simulated projections in the linearisation procedure for single material samples and in that way reduce beam hardening artefacts. The simulations can be used to predict beam hardening artefacts in multi material samples with complex geometry, illustrated with an example. Linearisation requires knowledge about the X-ray transmission at varying sample thickness, but in some cases homogeneous calibration phantoms are hard to manufacture, which affects the accuracy of the calibration. Using simulated data overcomes the manufacturing problems and in that way improves the calibration. (C) 2014 Elsevier B.V. All rights reserved.

General information

State: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, University of Copenhagen, Lund University, Technical University of Munich, University of Munich, Novo Nordisk AS
Contributors: Thomsen, M., Bergbäck Knudsen, E., Willendrup, P. K., Bech, M., Willner, M., Pfeiffer, F., Poulsen, M., Lefmann, K., Feidenhans'l, R.
Number of pages: 7
Pages: 314-320
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Volume: 342
ISSN (Print): 0168-583X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.36 SJR 0.558 SNIP 1.02
Web of Science (2017): Impact factor 1.323
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.22 SJR 0.662 SNIP 0.911
Web of Science (2016): Impact factor 1.109
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.32 SJR 0.722 SNIP 1.029
Web of Science (2015): Impact factor 1.389
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.14 SJR 0.61 SNIP 0.882
Web of Science (2014): Impact factor 1.124
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.47 SJR 0.678 SNIP 1.21
Web of Science (2013): Impact factor 1.186
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.18 SJR 0.661 SNIP 0.992
Web of Science (2012): Impact factor 1.266
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.24 SJR 0.703 SNIP 1.067
Web of Science (2011): Impact factor 1.211
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.853 SNIP 0.971
Web of Science (2010): Impact factor 1.042
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.68 SNIP 0.953
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.652 SNIP 0.851
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.79 SNIP 1.061
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.741 SNIP 0.958
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.616 SNIP 0.998
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.762 SNIP 0.941
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.602 SNIP 0.967
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.749 SNIP 1.037
Scopus rating (2001): SJR 0.569 SNIP 0.912
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.733 SNIP 0.925
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.679 SNIP 0.848
Original language: English
Keywords: Monte Carlo simulations, X-ray computed tomography, Beam hardening artefacts
DOIs:
10.1016/j.nimb.2014.10.015
Source: FindIt
Source-ID: 273983268
Research output: Research - peer-review ; Journal article – Annual report year: 2015