Predicting the population-level impact of mitigating harbor porpoise bycatch with pingers and time-area fishing closures - DTU Orbit (05/01/2019)

Predicting the population-level impact of mitigating harbor porpoise bycatch with pingers and time-area fishing closures

Unintentional mortality of higher trophic-level species in commercial fisheries (bycatch) represents a major conservation concern as it may influence the long-term persistence of populations. An increasingly common strategy to mitigate bycatch of harbor porpoises (Phocoena phocoena), a small and protected marine top predator, involves the use of pingers (acoustic alarms that emit underwater noise) and time-area fishing closures. Although these mitigation measures can reduce harbor porpoise bycatch in gillnet fisheries considerably, inference about the long-term population-level consequences is currently lacking. We developed a spatially explicit individual-based simulation model (IBM) with the aim to evaluate the effectiveness of these two bycatch mitigation measures. We quantified both the direct positive effects (i.e., reduced bycatch) and any indirect negative effects (i.e., reduced foraging efficiency) on the population size using the inner Danish waters as a biological system. The model incorporated empirical data on gillnet fishing effort and noise avoidance behavior by free-ranging harbor porpoises exposed to randomized high-frequency (20- to 160-kHz) pinger signals. The IBM simulations revealed a synergistic relationship between the implementation of time-area fishing closures and pinger deployment. Time-area fishing closures reduced bycatch rates substantially but not completely. In contrast, widespread pinger deployment resulted in total mitigation of bycatch but frequent and recurrent noise avoidance behavior in high-quality foraging habitat negatively affected individual survival and the total population size. When both bycatch mitigation measures were implemented simultaneously, the negative impact of pinger noise-induced sub-lethal behavioral effects on the population was largely eliminated with a positive effect on the population size that was larger than when the mitigation measures were used independently. Our study highlights that conservationists and policy makers need to consider and balance both the direct and indirect effects of harbor porpoise bycatch mitigation measures before enforcing their widespread implementation. Individual-based simulation models, such as the one presented here, offer an efficient and dynamic framework to evaluate the impact of human activities on the long-term survival of marine populations and can serve as a basis to design adaptive management strategies that satisfy both ecological and socioeconomic demands on marine ecosystems.

General information

State: Published
Organisations: National Institute of Aquatic Resources, Section for Ecosystem based Marine Management, Swedish University of Agricultural Sciences, Aarhus University
Contributors: van Beest, F., Kindt-Larsen, L., Bastardie, F., Bartolino, V., Nielsen, J. N.
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Ecosphere (Washington, D.C.)
Volume: 8
Issue number: 4
Article number: e01785
ISSN (Print): 2150-8925
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 2.78 SJR 1.461 SNIP 0.951
Web of Science (2017): Impact factor 2.671
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.61 SJR 1.439 SNIP 0.976
Web of Science (2016): Impact factor 2.49
Scopus rating (2015): CiteScore 2.27 SJR 1.507 SNIP 0.844
Web of Science (2015): Impact factor 2.287
Scopus rating (2014): CiteScore 2.37 SJR 1.438 SNIP 1.038
Web of Science (2014): Impact factor 2.255
Scopus rating (2013): CiteScore 3.77 SJR 2.088 SNIP 1.447
Web of Science (2013): Impact factor 2.595
Scopus rating (2012): SJR 1.563 SNIP 1.12
Scopus rating (2011): SJR 0.957 SNIP 0.553
Original language: English
Electronic versions:
Publishers version
DOIs: 10.1002/ecs2.1785
URLs: