Predicting eukaryotic protein secretion without signals - DTU Orbit (18/02/2019)

Predicting eukaryotic protein secretion without signals

Predicting unconventional protein secretion is a much harder problem than predicting signal peptide-based protein secretion, both due to the small number of examples and due to the heterogeneity and the limited knowledge of the pathways involved, especially in eukaryotes. However, the idea that secreted proteins share certain properties regardless of the secretion pathway used made it possible to construct the prediction method SecretomeP in 2004. Here, we take a critical look at SecretomeP and its successors, and we also discuss whether multi-category subcellular location predictors can be used to predict unconventional protein secretion in eukaryotes. A new benchmark shows SecretomeP to perform much worse than initially estimated, casting doubt on the underlying hypothesis. On a more positive note, recent developments in machine learning may have the potential to construct new methods which can not only predict unconventional protein secretion but also point out which parts of a sequence are important for secretion.

General information

State: Accepted/In press
Organisations: Department of Health Technology, Universitätsklinikum Düsseldorf
Contributors: Nielsen, H., Petsalaki, E. I., Zhao, L., Stühler, K.
Number of pages: 8
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: B B A - Proteins and Proteomics
ISSN (Print): 1570-9639
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.74 SJR 1.17 SNIP 0.875
Web of Science (2017): Impact factor 2.609
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.78 SJR 1.315 SNIP 0.852
Web of Science (2016): Impact factor 2.773
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.02 SJR 1.498 SNIP 0.94
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.65 SJR 1.381 SNIP 0.911
Web of Science (2014): Impact factor 2.747
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.71 SJR 1.854 SNIP 1.152
Web of Science (2013): Impact factor 3.191
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.44 SJR 1.808 SNIP 1.108
Web of Science (2012): Impact factor 3.733
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.5 SJR 1.77 SNIP 1.147
Web of Science (2011): Impact factor 3.635
ISI indexed (2011): ISI indexed yes