Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond

Publication: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

We demonstrate a technique for precision sensing of temperature or the magnetic field by simultaneously driving two hyperfine transitions involving distinct electronic states of the nitrogen-vacancy center in diamond. Frequency modulation of both driving fields is used with either the same or opposite phase, resulting in the immunity to fluctuations in either the magnetic field or the temperature, respectively. In this way, a sensitivity of 1.4 nT Hz-1/2 or 430 μK Hz-1/2 is demonstrated. The presented technique only requires a single frequency demodulator and enables the use of phase-sensitive camera imaging sensors. A simple extension of the method utilizing two demodulators allows for simultaneous, independent, and high-bandwidth monitoring of both the magnetic field and temperature.
Original languageEnglish
Article number013502
JournalApplied Physics Letters
Volume113
Issue number1
Number of pages5
ISSN0003-6951
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 150383576