Power Admission Control with Predictive Thermal Management in Smart Buildings - DTU Orbit (15/12/2018)

Power Admission Control with Predictive Thermal Management in Smart Buildings

This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First, the power budget with a given thermal comfort constraint is optimized through budget-schedulability analysis which amounts to solving a constrained linear programming problem. Second, the effective peak power demand is reduced by means of the optimal scheduling and cooperative operation of multiple thermal appliances. The performance of the proposed control scheme is assessed by simulation based on the thermal dynamics of a real eight-room office building located at Danish Technical University.

General information

State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Energy System Management, Polytechnique Montreal, Shanghai Jiao Tong University, National Digital Switching System Engineering and Technological R&D Center
Contributors: Yao, J., Costanzo, G. T., Zhu, G., Wen, B.
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: IEEE Transactions on Industrial Electronics
Volume: 62
Issue number: 4
ISSN (Print): 0278-0046
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.07 SJR 2.192 SNIP 3.257
Web of Science (2017): Impact factor 7.05
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.25 SJR 2.289 SNIP 3.669
Web of Science (2016): Impact factor 7.168
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.47 SJR 2.476 SNIP 4.081
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 9.19 SJR 2.341 SNIP 4.647
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.14 SJR 2.21 SNIP 5.01
Web of Science (2013): Impact factor 6.5
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.27 SJR 2.075 SNIP 4.304
Web of Science (2012): Impact factor 5.165
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 7.72 SJR 1.954 SNIP 3.841
Web of Science (2011): Impact factor 5.16
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes