Potentials and possible safety issues of using biorefinery products in food value chains -
DTU Orbit (11/12/2018)

Potentials and possible safety issues of using biorefinery products in food value chains

Background
More than one third of all food produced globally goes to waste. New biorefining and bio-processing approaches can help make higher value products from many more components of large scale agro- and food processes than previously exploited. If we do not take advantage of such new bioprocessing opportunities we will soon be wasting even more and in certain cases miss out on opportunities for producing healthier foods.

Scope and Approach
In this short treatise we have selected recent bioprocessing examples that target production of new products from biomass, including plant and marine biomass, and especially from food- and agro-industrial side streams. We have coined these processes and the products from them as having potential since they also encompass improved resource efficiency, getting more value out the raw materials, and lowering of the climate impact of food production per ton produced. These targets go hand in hand with improved industrial competitiveness. A focus on the full use of the biomass, by biological (microbial or enzymatic) processing of residues and side-streams, can pave the way for production of higher value products, such as food and feed ingredients combined with production of bio-fertilizers and bioenergy.

Key findings and conclusions
The new opportunities for bio-based value chains from the yellow and the green agricultural and forestry bio-refineries, bioprocessing of different types of food- and agro-industrial side-streams and new materials from the blue biomass, e.g. seaweeds, and the red slaughterhouse side-streams are described, exemplified and discussed, and safety issues are addressed.

In conclusion
Increased resource efficiency via targeted biorefining, often employing enzymatic processing, may open the door to improved environmental sustainability and industrial competitiveness. Further, a biorefining agenda can create new jobs. Development of new business models may moreover pave the way for revenue sharing through the entire value chain.

General information
State: Accepted/In press
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, Department of Biotechnology and Biomedicine, Section for Protein Chemistry and Enzyme Technology
Contributors: Lange, L., Meyer, A. S.
Number of pages: 12
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Trends in Food Science and Technology
ISSN (Print): 0924-2244
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.67 SJR 2.344 SNIP 2.444
Web of Science (2017): Impact factor 6.609
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6 SJR 2.357 SNIP 2.775
Web of Science (2016): Impact factor 5.191
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.51 SJR 2.232 SNIP 2.626
Web of Science (2015): Impact factor 5.15
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.17 SJR 2.173 SNIP 2.767
Web of Science (2014): Impact factor 4.651
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.83 SJR 2.216 SNIP 2.653
Web of Science (2013): Impact factor 4.651
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.91 SJR 2.048 SNIP 2.417
Web of Science (2012): Impact factor 4.135
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.81 SJR 1.897 SNIP 2.675
Web of Science (2011): Impact factor 3.672
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.763 SNIP 2.508
Web of Science (2010): Impact factor 3.71
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.187 SNIP 2.567
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.75 SNIP 2.321
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.682 SNIP 2.279
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.17 SNIP 2.065
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.041 SNIP 1.948
Scopus rating (2004): SJR 1.069 SNIP 1.948
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.74 SNIP 1.479
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.882 SNIP 1.55
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.97 SNIP 1.52
Scopus rating (2000): SJR 1.207 SNIP 1.906
Scopus rating (1999): SJR 1.085 SNIP 1.605
Original language: English
Keywords: Food and feed ingredients from biorefinery biomass conversion, Increased resource efficiency, Reduction of food waste, New biobased value chains, Strengthened industrial competitiveness, Safety assessments of ingredients from biomass bioprocessing
DOIs:
10.1016/j.tifs.2018.08.016
Source: FindIt
Source-ID: 2438877931
Research output: Research - peer-review > Journal article – Annual report year: 2018