Potential of phytase-mediated iron release from cereal-based foods: a quantitative view.

The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via enzyme-catalysed dephosphorylation of phytate, indicating the potential of this strategy for preventing and treating iron deficiency anaemia. Despite the immense promise of this strategy and the prevalence of iron deficiency worldwide, the number of human studies elucidating the significance of phytase-mediated improvements in iron absorption and ultimately in iron status in particularly vulnerable groups is still low. A more detailed understanding of (1) the uptake mechanism for iron released from partially dephosphorylated phytate chelates, (2) the affinity of microbially derived phytases towards insoluble iron phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering, National Food Institute, Division of Nutrition
Contributors: Nielsen, A. V. F., Tetens, I., Meyer, A. S.
Pages: 3074-3098
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Nutrients
Volume: 5
Issue number: 8
ISSN (Print): 2072-6643
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.35 SJR 1.557 SNIP 1.403
Web of Science (2017): Impact factor 4.196
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.29 SJR 1.543 SNIP 1.411
Web of Science (2016): Impact factor 3.55
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.07 SJR 1.481 SNIP 1.408
Web of Science (2015): Impact factor 3.759
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.78 SJR 1.392 SNIP 1.289
Web of Science (2014): Impact factor 3.27
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.86 SJR 1.309 SNIP 1.241
Web of Science (2013): Impact factor 3.148
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.12 SJR 0.662 SNIP 1.005
Web of Science (2012): Impact factor 2.072
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.8 SJR 0.29 SNIP 0.369
Web of Science (2011): Impact factor 0.676